
Kevin Buchin

Maximilian Konzack

Progressive Simplification
of Polygonal Curves

Wim Reddingius

Curve Simplification

Curve Simplification

min-# Simplification problem:
• Given a polygonal curve C and an

ε > 0 as an error threshold
• Objective: minimize the number

of vertices in a simplification S

Curve Simplification

min-# Simplification problem:
• Given a polygonal curve C and an

ε > 0 as an error threshold
• Objective: minimize the number

of vertices in a simplification S

Curve Simplification

ε

min-# Simplification problem:
• Given a polygonal curve C and an

ε > 0 as an error threshold

Curve Simplification

Upper bound [Chan and Chin, 1996]

Higher dimensions [Barequet et al., 2002]

A min-# simplification can be
computed in O(n2) time in R2

For the L1 or L∞ metric, a min-#
simplification can be computed in O(n2)
time

Progressive Simplification

S1

Progressive Simplification

Zoom out

S1

Progressive Simplification

Zoom out

S2 S1

Progressive Simplification

Zoom out

S3 S2 S1

Progressive Simplification

Zoom out

S4 S3 S2 S1

Progressive Simplification

Zoom out

Zoom in

S4 S3 S2 S1

Progressive Simplification

Zoom out

Zoom in

S4 S3 S2 S1

Impose Consistency Across Many Scales
• Zoom in and out without flickering

• Require monotonicity : Sm v Sm−1 v · · · v C
• Minimize

∑m
k=1 |Sk | (optimality)

• A sequence of m scales: 0 < ε1 < · · · < εm

Results

• An O(n3m) time algorithm for the progressive
simplification problem
S 2
v
S 1
v
C

• works with various distance measures such as Hausdorff,
Fréchet and area-based distances

• enables simplification for continuous scaling in O(n5) time

Shortcut Graph

ε

Shortcut:
• Given a polygonal curve C, a

shortcut (pi , pj) is an ordered pair
of vertices

• Given C and an ε > 0, (pi , pj) is
valid if ε(pi , pj) ≤ ε

Validity:

p1

p4

Shortcut Graph

C

Shortcut Graph

• Given a curve C and an ε > 0, the shortcut graph G (C, ε)
captures all valid shortcuts

C G (C, ε)

Shortcut Graph

• Given a curve C and an ε > 0, the shortcut graph G (C, ε)
captures all valid shortcuts

C G (C, ε) S

• Minimum-link path in G (C, ε) is an optimal simplification S

Minimal Progressive Simplification

Dynamic Programming

• Assign a cost value cki ,j ∈ N for each shortcut
(pi , pj) ∈ G (C, εk) at scale εk

• cki ,j relates to the cost of including (pi , pj) in Sk

Minimal Progressive Simplification

Dynamic Programming

• Assign a cost value cki ,j ∈ N for each shortcut
(pi , pj) ∈ G (C, εk) at scale εk

• cki ,j relates to the cost of including (pi , pj) in Sk

1
11

1 1 1 1

G (C, ε1)

• Example: ε1 < ε2 < ε3

p1 pn

Minimal Progressive Simplification

Dynamic Programming

• Assign a cost value cki ,j ∈ N for each shortcut
(pi , pj) ∈ G (C, εk) at scale εk

• cki ,j relates to the cost of including (pi , pj) in Sk

1
11

1 1 1 1

1

G (C, ε1)

S1

11

• Example: ε1 < ε2 < ε3

p1 pn

Minimal Progressive Simplification

Dynamic Programming

• Assign a cost value cki ,j ∈ N for each shortcut
(pi , pj) ∈ G (C, εk) at scale εk

• cki ,j relates to the cost of including (pi , pj) in Sk

1
1

3 4

1
1 1 1 1

1

G (C, ε1) G (C, ε2)

S1

11

⊆

• Example: ε1 < ε2 < ε3

p1 pn

Minimal Progressive Simplification

Dynamic Programming

• Assign a cost value cki ,j ∈ N for each shortcut
(pi , pj) ∈ G (C, εk) at scale εk

• cki ,j relates to the cost of including (pi , pj) in Sk

1 2
1

3

2

4

1 2
2 2 2 21 1 1 1

1

G (C, ε1) G (C, ε2)

S1

11

⊆

• Example: ε1 < ε2 < ε3

p1 pn

Minimal Progressive Simplification

Dynamic Programming

• Assign a cost value cki ,j ∈ N for each shortcut
(pi , pj) ∈ G (C, εk) at scale εk

• cki ,j relates to the cost of including (pi , pj) in Sk

1 2
1

3

2

4

1 2

3

2 2 2 21 1 1 1

1

G (C, ε1) G (C, ε2)

S2S1

11 2

⊆

w

• Example: ε1 < ε2 < ε3

p1 pn

Minimal Progressive Simplification

Dynamic Programming

• Assign a cost value cki ,j ∈ N for each shortcut
(pi , pj) ∈ G (C, εk) at scale εk

• cki ,j relates to the cost of including (pi , pj) in Sk

1 2
1

3

43

6
2

4 5

1 2 33

3

2 2 2 2 3 3 331 1 1 1

1

G (C, ε1) G (C, ε2) G (C, ε3)

S2S1

11 2

⊆ ⊆

w

• Example: ε1 < ε2 < ε3

p1 pn

Minimal Progressive Simplification

Dynamic Programming

• Assign a cost value cki ,j ∈ N for each shortcut
(pi , pj) ∈ G (C, εk) at scale εk

• cki ,j relates to the cost of including (pi , pj) in Sk

1 2
1

3

43

6
2

4 5

1 2 33

3

2 2 2 2 3 3 331 1 1 1

1

G (C, ε1) G (C, ε2) G (C, ε3)

S2S1 S3

11
6

2

⊆ ⊆

w w

• Example: ε1 < ε2 < ε3

p1 pn

Minimal Progressive Simplification

Dynamic Program

cki ,j =

1 if k = 1

1 + min
π∈

∏k−1
i ,j

∑
(px ,py)∈π

ck−1x ,y if 1 < k ≤ m

∏k
i ,j denotes the set of all paths in G (C, εk) from pi to pj

Minimal Progressive Simplification

Dynamic Program

cki ,j =

1 if k = 1

1 + min
π∈

∏k−1
i ,j

∑
(px ,py)∈π

ck−1x ,y if 1 < k ≤ m

∏k
i ,j denotes the set of all paths in G (C, εk) from pi to pj

Algorithm
Construct simplifications from Sm down to S1

1. Compute costs cki ,j at scale εk

2. Compute shortest path P from pi to
pj in G (C, εk) for all (pi , pj) ∈ Sk+1

3. Link P to obtain Sk

Minimal Progressive Simplification

Algorithm
Construct simplifications from Sm down to S1

1. Compute costs cki ,j at scale εk

2. Compute shortest path P from pi to
pj in G (C, εk) for all (pi , pj) ∈ Sk+1

3. Link P to obtain Sk

Running time
m times

Minimal Progressive Simplification

Algorithm
Construct simplifications from Sm down to S1

1. Compute costs cki ,j at scale εk

2. Compute shortest path P from pi to
pj in G (C, εk) for all (pi , pj) ∈ Sk+1

3. Link P to obtain Sk

Running time
m times
O(n2)

• Employ the algorithm by [Chan and Chin, 1996]

• Runs in O(n2) time in the plane

Minimal Progressive Simplification

Algorithm
Construct simplifications from Sm down to S1

1. Compute costs cki ,j at scale εk

2. Compute shortest path P from pi to
pj in G (C, εk) for all (pi , pj) ∈ Sk+1

3. Link P to obtain Sk

Running time
m times

• Run Dijkstra’s algorithm on O(n) nodes of G (C, εk)

• Dijkstra’s algorithm runs in O(n2) time on G with
integer weights

O(n2)

O(n3)

Minimal Progressive Simplification

Algorithm
Construct simplifications from Sm down to S1

1. Compute costs cki ,j at scale εk

2. Compute shortest path P from pi to
pj in G (C, εk) for all (pi , pj) ∈ Sk+1

3. Link P to obtain Sk

Running time
m times
O(n2)

O(n3)

O(n)

• Employ the algorithm by [Chan and Chin, 1996]

O(n3)

Minimal Progressive Simplification

Algorithm
Construct simplifications from Sm down to S1

1. Compute costs cki ,j at scale εk

2. Compute shortest path P from pi to
pj in G (C, εk) for all (pi , pj) ∈ Sk+1

3. Link P to obtain Sk

Running time
m times
O(n2)

O(n3)

O(n)

O(n3)

O(n)

Total Running Time

• Optimal progressive simplification computable in O(n3m)
time

• Takes O(n5) time for continuous scaling

Conclusion

• An O(n3m) time algorithm for the progressive
simplification problem
S 2
v
S 1
v
C

• works with various distance measures such as Hausdorff,
Fréchet and area-based distances

• enables simplification for continuous scaling in O(n5) time

Conclusion

Thank you for your attention.

Further Results
• Technique to compute all shortcuts for a fixed ε in

O(n2 log n) time instead of O(n3) time

• Storage-efficient representation of the shortcut graph
allowing to find shortest paths in O(n log n) time

• Experimental evaluation on a trajectory of a migrating
vulture

