Progressive Simplification of Polygonal Curves

Kevin Buchin
Maximilian Konzack
Wim Reddingius

Technische Universiteit Eindhoven
University of Technology

Curve Simplification

min-\# Simplification problem:

- Given a polygonal curve \mathcal{C} and an $\varepsilon>0$ as an error threshold
- Objective: minimize the number of vertices in a simplification \mathcal{S}

Curve Simplification

min-\# Simplification problem:

- Given a polygonal curve \mathcal{C} and an $\varepsilon>0$ as an error threshold
- Objective: minimize the number of vertices in a simplification \mathcal{S}

Curve Simplification

min-\# Simplification problem:

- Given a polygonal curve \mathcal{C} and an
$\varepsilon>0$ as an error threshold

Curve Simplification

Upper bound [Chan and Chin, 1996] A min-\# simplification can be computed in $O\left(n^{2}\right)$ time in \mathbb{R}^{2}

Zoom out

Zoom out

Zoom out

Zoom out

Progressive Simplification

Zoom in

Zoom out

Progressive Simplification

Zoom in

Zoom out
Impose Consistency Across Many Scales

- Zoom in and out without flickering
- A sequence of m scales: $0<\varepsilon_{1}<\cdots<\varepsilon_{m}$
- Require monotonicity: $\mathcal{S}_{m} \sqsubseteq \mathcal{S}_{m-1} \sqsubseteq \cdots \sqsubseteq \mathcal{C}$
- Minimize $\sum_{k=1}^{m}\left|\mathcal{S}_{k}\right|$ (optimality)
- An $O\left(n^{3} m\right)$ time algorithm for the progressive simplification problem
- works with various distance measures such as Hausdorff, Fréchet and area-based distances
- enables simplification for continuous scaling in $O\left(n^{5}\right)$ time

Shortcut Graph

Shortcut:

- Given a polygonal curve \mathcal{C}, a shortcut (p_{i}, p_{j}) is an ordered pair of vertices

Validity:

- Given \mathcal{C} and an $\varepsilon>0,\left(p_{i}, p_{j}\right)$ is valid if $\varepsilon\left(p_{i}, p_{j}\right) \leq \varepsilon$

Shortcut Graph

Shortcut Graph

- Given a curve \mathcal{C} and an $\varepsilon>0$, the shortcut graph $G(\mathcal{C}, \varepsilon)$ captures all valid shortcuts

Shortcut Graph

- Given a curve \mathcal{C} and an $\varepsilon>0$, the shortcut graph $G(\mathcal{C}, \varepsilon)$ captures all valid shortcuts

- Minimum-link path in $G(\mathcal{C}, \varepsilon)$ is an optimal simplification \mathcal{S}

Minimal Progressive Simplification

Dynamic Programming

- Assign a cost value $c_{i, j}^{k} \in \mathbb{N}$ for each shortcut $\left(p_{i}, p_{j}\right) \in G\left(\mathcal{C}, \varepsilon_{k}\right)$ at scale ε_{k}
- $c_{i, j}^{k}$ relates to the cost of including $\left(p_{i}, p_{j}\right)$ in \mathcal{S}_{k}

Minimal Progressive Simplification

Dynamic Programming

- Assign a cost value $c_{i, j}^{k} \in \mathbb{N}$ for each shortcut $\left(p_{i}, p_{j}\right) \in G\left(C, \varepsilon_{k}\right)$ at scale ε_{k}
- $c_{i, j}^{k}$ relates to the cost of including $\left(p_{i}, p_{j}\right)$ in \mathcal{S}_{k}
- Example: $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}$

$$
G\left(\mathcal{C}, \varepsilon_{1}\right)
$$

Minimal Progressive Simplification

Dynamic Programming

- Assign a cost value $c_{i, j}^{k} \in \mathbb{N}$ for each shortcut $\left(p_{i}, p_{j}\right) \in G\left(\mathcal{C}, \varepsilon_{k}\right)$ at scale ε_{k}
- $c_{i, j}^{k}$ relates to the cost of including $\left(p_{i}, p_{j}\right)$ in \mathcal{S}_{k}
- Example: $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}$

$$
G\left(\mathcal{C}, \varepsilon_{1}\right)
$$

$$
\mathcal{S}_{1}
$$

Minimal Progressive Simplification

Dynamic Programming

- Assign a cost value $c_{i, j}^{k} \in \mathbb{N}$ for each shortcut $\left(p_{i}, p_{j}\right) \in G\left(\mathcal{C}, \varepsilon_{k}\right)$ at scale ε_{k}
- $c_{i, j}^{k}$ relates to the cost of including $\left(p_{i}, p_{j}\right)$ in \mathcal{S}_{k}
- Example: $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}$

\mathcal{S}_{1}

Minimal Progressive Simplification

Dynamic Programming

- Assign a cost value $c_{i, j}^{k} \in \mathbb{N}$ for each shortcut $\left(p_{i}, p_{j}\right) \in G\left(\mathcal{C}, \varepsilon_{k}\right)$ at scale ε_{k}
- $c_{i, j}^{k}$ relates to the cost of including $\left(p_{i}, p_{j}\right)$ in \mathcal{S}_{k}
- Example: $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}$

Minimal Progressive Simplification

Dynamic Programming

- Assign a cost value $c_{i, j}^{k} \in \mathbb{N}$ for each shortcut $\left(p_{i}, p_{j}\right) \in G\left(\mathcal{C}, \varepsilon_{k}\right)$ at scale ε_{k}
- $c_{i, j}^{k}$ relates to the cost of including $\left(p_{i}, p_{j}\right)$ in \mathcal{S}_{k}
- Example: $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}$

Minimal Progressive Simplification

Dynamic Programming

- Assign a cost value $c_{i, j}^{k} \in \mathbb{N}$ for each shortcut $\left(p_{i}, p_{j}\right) \in G\left(\mathcal{C}, \varepsilon_{k}\right)$ at scale ε_{k}
- $c_{i, j}^{k}$ relates to the cost of including $\left(p_{i}, p_{j}\right)$ in \mathcal{S}_{k}
- Example: $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}$

Minimal Progressive Simplification

Dynamic Programming

- Assign a cost value $c_{i, j}^{k} \in \mathbb{N}$ for each shortcut $\left(p_{i}, p_{j}\right) \in G\left(\mathcal{C}, \varepsilon_{k}\right)$ at scale ε_{k}
- $c_{i, j}^{k}$ relates to the cost of including $\left(p_{i}, p_{j}\right)$ in \mathcal{S}_{k}
- Example: $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}$

Minimal Progressive Simplification

Dynamic Program

$$
c_{i, j}^{k}= \begin{cases}1 & \text { if } k=1 \\ 1+\min _{\pi \in \prod_{i, j}^{k-1}} \sum_{\left(p_{x}, p_{y}\right) \in \pi} c_{x, y}^{k-1} & \text { if } 1<k \leq m\end{cases}
$$

$\prod_{i, j}^{k}$ denotes the set of all paths in $G\left(\mathcal{C}, \varepsilon_{k}\right)$ from p_{i} to p_{j}

Minimal Progressive Simplification

Dynamic Program

$$
c_{i, j}^{k}= \begin{cases}1 & \text { if } k=1 \\ 1+\min _{\pi \in \prod_{i, j}^{k-1}} \sum_{\left(p_{x}, p_{y}\right) \in \pi} c_{x, y}^{k-1} & \text { if } 1<k \leq m\end{cases}
$$

$\prod_{i, j}^{k}$ denotes the set of all paths in $G\left(\mathcal{C}, \varepsilon_{k}\right)$ from p_{i} to p_{j}
Algorithm
Construct simplifications from \mathcal{S}_{m} down to \mathcal{S}_{1}

1. Compute costs $c_{i, j}^{k}$ at scale ε_{k}
2. Compute shortest path P from p_{i} to
p_{j} in $G\left(\mathcal{C}, \varepsilon_{k}\right)$ for all $\left(p_{i}, p_{j}\right) \in S_{k+1}$
3. Link P to obtain \mathcal{S}_{k}

Algorithm
Construct simplifications from \mathcal{S}_{m} down to \mathcal{S}_{1}

Running time m times

1. Compute costs $c_{i, j}^{k}$ at scale ε_{k}
2. Compute shortest path P from p_{i} to
p_{j} in $G\left(\mathcal{C}, \varepsilon_{k}\right)$ for all $\left(p_{i}, p_{j}\right) \in S_{k+1}$
3. Link P to obtain \mathcal{S}_{k}

- Employ the algorithm by [Chan and Chin, 1996]
- Runs in $O\left(n^{2}\right)$ time in the plane

Algorithm
Construct simplifications from \mathcal{S}_{m} down to \mathcal{S}_{1} 1. Compute costs $c_{i, j}^{k}$ at scale ε_{k}
2. Compute shortest path P from p_{i} to p_{j} in $G\left(\mathcal{C}, \varepsilon_{k}\right)$ for all $\left(p_{i}, p_{j}\right) \in S_{k+1}$
3. Link P to obtain \mathcal{S}_{k}

Running time

 m times $O\left(n^{2}\right)$
Minimal Progressive Simplification

- Run Dijkstra's algorithm on $O(n)$ nodes of $G\left(\mathcal{C}, \varepsilon_{k}\right)$
- Dijkstra's algorithm runs in $O\left(n^{2}\right)$ time on G with integer weights

Algorithm
Construct simplifications from \mathcal{S}_{m} down to \mathcal{S}_{1} 1. Compute costs $c_{i, j}^{k}$ at scale ε_{k}
2. Compute shortest path P from p_{i} to p_{j} in $G\left(\mathcal{C}, \varepsilon_{k}\right)$ for all $\left(p_{i}, p_{j}\right) \in S_{k+1}$
3. Link P to obtain \mathcal{S}_{k}

Running time m times
$O\left(n^{2}\right)$
$O\left(n^{3}\right)$

Minimal Progressive Simplification

- Employ the algorithm by [Chan and Chin, 1996]

Algorithm
Construct simplifications from \mathcal{S}_{m} down to \mathcal{S}_{1} 1. Compute costs $c_{i, j}^{k}$ at scale ε_{k}
2. Compute shortest path P from p_{i} to p_{j} in $G\left(\mathcal{C}, \varepsilon_{k}\right)$ for all $\left(p_{i}, p_{j}\right) \in S_{k+1}$
3. Link P to obtain \mathcal{S}_{k}

Running time m times
$O\left(n^{2}\right)$
$O\left(n^{3}\right)$

Total Running Time

- Optimal progressive simplification computable in $O\left(n^{3} m\right)$ time
- Takes $O\left(n^{5}\right)$ time for continuous scaling

Algorithm
Construct simplifications from \mathcal{S}_{m} down to \mathcal{S}_{1} 1. Compute costs $c_{i, j}^{k}$ at scale ε_{k}
2. Compute shortest path P from p_{i} to p_{j} in $G\left(\mathcal{C}, \varepsilon_{k}\right)$ for all $\left(p_{i}, p_{j}\right) \in S_{k+1}$
3. Link P to obtain \mathcal{S}_{k}

Running time m times
$O\left(n^{2}\right)$
$O\left(n^{3}\right)$
$O(n)$

- An $O\left(n^{3} m\right)$ time algorithm for the progressive simplification problem
- works with various distance measures such as Hausdorff, Fréchet and area-based distances
- enables simplification for continuous scaling in $O\left(n^{5}\right)$ time

Conclusion

Further Results

- Technique to compute all shortcuts for a fixed ε in $O\left(n^{2} \log n\right)$ time instead of $O\left(n^{3}\right)$ time
- Storage-efficient representation of the shortcut graph allowing to find shortest paths in $O(n \log n)$ time
- Experimental evaluation on a trajectory of a migrating vulture

Thank you for your attention.

