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Curve Simplification

Upper bound [Chan and Chin, 1996]

Higher dimensions [Barequet et al., 2002]

A min-# simplification can be
computed in O(n2) time in R2

For the L1 or L∞ metric, a min-#
simplification can be computed in O(n2)
time
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Progressive Simplification
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Impose Consistency Across Many Scales
• Zoom in and out without flickering

• Require monotonicity : Sm v Sm−1 v · · · v C
• Minimize

∑m
k=1 |Sk | (optimality)

• A sequence of m scales: 0 < ε1 < · · · < εm



Results

• An O(n3m) time algorithm for the progressive
simplification problem
S 2
v
S 1
v
C

• works with various distance measures such as Hausdorff,
Fréchet and area-based distances

• enables simplification for continuous scaling in O(n5) time



Shortcut Graph

ε

Shortcut:
• Given a polygonal curve C, a

shortcut (pi , pj) is an ordered pair
of vertices

• Given C and an ε > 0, (pi , pj) is
valid if ε(pi , pj) ≤ ε

Validity:

p1

p4
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• Given a curve C and an ε > 0, the shortcut graph G (C, ε)
captures all valid shortcuts
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Shortcut Graph

• Given a curve C and an ε > 0, the shortcut graph G (C, ε)
captures all valid shortcuts

C G (C, ε) S

• Minimum-link path in G (C, ε) is an optimal simplification S
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Algorithm
Construct simplifications from Sm down to S1

1. Compute costs cki ,j at scale εk

2. Compute shortest path P from pi to
pj in G (C, εk) for all (pi , pj) ∈ Sk+1

3. Link P to obtain Sk

Running time
m times

• Run Dijkstra’s algorithm on O(n) nodes of G (C, εk)

• Dijkstra’s algorithm runs in O(n2) time on G with
integer weights

O(n2)

O(n3)
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Algorithm
Construct simplifications from Sm down to S1

1. Compute costs cki ,j at scale εk

2. Compute shortest path P from pi to
pj in G (C, εk) for all (pi , pj) ∈ Sk+1

3. Link P to obtain Sk

Running time
m times
O(n2)

O(n3)

O(n)

O(n3)

O(n)

Total Running Time

• Optimal progressive simplification computable in O(n3m)
time

• Takes O(n5) time for continuous scaling



Conclusion

• An O(n3m) time algorithm for the progressive
simplification problem
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• works with various distance measures such as Hausdorff,
Fréchet and area-based distances

• enables simplification for continuous scaling in O(n5) time



Conclusion

Thank you for your attention.

Further Results
• Technique to compute all shortcuts for a fixed ε in

O(n2 log n) time instead of O(n3) time

• Storage-efficient representation of the shortcut graph
allowing to find shortest paths in O(n log n) time

• Experimental evaluation on a trajectory of a migrating
vulture


