Progressive Simplification of Polygonal Curves

Kevin Buchin *Maximilian Konzack* Wim Reddingius

Technische Universiteit **Eindhoven** University of Technology

Curve Simplification

min-# Simplification problem:

- Given a polygonal curve C and an $\varepsilon > 0$ as an error threshold
- Objective: minimize the number of vertices in a simplification \mathcal{S}

min-# Simplification problem:

- Given a polygonal curve C and an $\varepsilon > 0$ as an error threshold
- Objective: minimize the number of vertices in a simplification \mathcal{S}

min-# Simplification problem:

$\bullet\,$ Given a polygonal curve ${\mathcal C}$ and an

 $\varepsilon > 0$ as an error threshold

Curve Simplification

Upper bound [Chan and Chin, 1996] A min-# simplification can be computed in $O(n^2)$ time in \mathbb{R}^2

> Higher dimensions [Barequet et al., 2002] For the L_1 or L_∞ metric, a min-# simplification can be computed in $O(n^2)$ time

TUe Technische Universiteit Eindhoven University of Technology

TU/e Technische Universiteit Eindhoven University of Technology

Zoom out

Technische Universiteit **Eindhoven** University of Technology

TU/e

Technische Universiteit **Eindhoven** University of Technology

TU/e

Technische Universiteit **Eindhoven** University of Technology

TU/e

TU/e Technische Universiteit Eindhoven University of Technology

Impose Consistency Across Many Scales

- Zoom in and out without flickering
- A sequence of *m* scales: $0 < \varepsilon_1 < \cdots < \varepsilon_m$
- Require *monotonicity*: $S_m \sqsubseteq S_{m-1} \sqsubseteq \cdots \sqsubseteq C$
- Minimize $\sum_{k=1}^{m} |S_k|$ (optimality)

Results

- An O(n³m) time algorithm for the progressive simplification problem
- works with various distance measures such as Hausdorff, Fréchet and area-based distances
- enables simplification for continuous scaling in $O(n^5)$ time

Shortcut:

 p_1

Given a polygonal curve C, a shortcut (p_i, p_j) is an ordered pair of vertices

Validity:

p4

• Given C and an $\varepsilon > 0$, (p_i, p_j) is valid if $\varepsilon(p_i, p_j) \le \varepsilon$

Given a curve C and an ε > 0, the shortcut graph G(C, ε) captures all valid shortcuts

Given a curve C and an ε > 0, the shortcut graph G(C, ε) captures all valid shortcuts

• Minimum-link path in $G(\mathcal{C}, \varepsilon)$ is an optimal simplification \mathcal{S}

Dynamic Programming

- Assign a cost value $c_{i,j}^k \in \mathbb{N}$ for each shortcut $(p_i, p_j) \in G(\mathcal{C}, \varepsilon_k)$ at scale ε_k
- $c_{i,j}^{k}$ relates to the cost of including (p_i, p_j) in S_k

TU/e Technische Eindhoven University

Dynamic Programming

- Assign a cost value $c_{i,j}^k \in \mathbb{N}$ for each shortcut $(p_i, p_j) \in G(\mathcal{C}, \varepsilon_k)$ at scale ε_k
- $c_{i,j}^{k}$ relates to the cost of including (p_i, p_j) in S_k

TU

e Technische Eindhover

• Example: $\varepsilon_1 < \varepsilon_2 < \varepsilon_3$

 $G(\mathcal{C}, arepsilon_1)$

Dynamic Programming

- Assign a cost value $c_{i,j}^k \in \mathbb{N}$ for each shortcut $(p_i, p_j) \in G(\mathcal{C}, \varepsilon_k)$ at scale ε_k
- $c_{i,j}^{k}$ relates to the cost of including (p_i, p_j) in S_k

TU

• Example: $\varepsilon_1 < \varepsilon_2 < \varepsilon_3$

 ${\sf G}({\mathcal C}$, $arepsilon_1)$

Dynamic Programming

- Assign a cost value $c_{i,j}^k \in \mathbb{N}$ for each shortcut $(p_i, p_j) \in G(\mathcal{C}, \varepsilon_k)$ at scale ε_k
- $c_{i,j}^{k}$ relates to the cost of including (p_i, p_j) in S_k
- Example: $\varepsilon_1 < \varepsilon_2 < \varepsilon_3$

 S_1

Dynamic Programming

- Assign a cost value $c_{i,j}^k \in \mathbb{N}$ for each shortcut $(p_i, p_j) \in G(\mathcal{C}, \varepsilon_k)$ at scale ε_k
- $c_{i,j}^{k}$ relates to the cost of including (p_i, p_j) in S_k
- Example: $\varepsilon_1 < \varepsilon_2 < \varepsilon_3$

 S_1

Dynamic Programming

- Assign a cost value $c_{i,j}^k \in \mathbb{N}$ for each shortcut $(p_i, p_j) \in G(\mathcal{C}, \varepsilon_k)$ at scale ε_k
- $c_{i,j}^{k}$ relates to the cost of including (p_i, p_j) in S_k
- Example: $\varepsilon_1 < \varepsilon_2 < \varepsilon_3$

Dynamic Programming

- Assign a cost value $c_{i,j}^k \in \mathbb{N}$ for each shortcut $(p_i, p_j) \in G(\mathcal{C}, \varepsilon_k)$ at scale ε_k
- $c_{i,j}^{k}$ relates to the cost of including (p_i, p_j) in S_k
- Example: $\varepsilon_1 < \varepsilon_2 < \varepsilon_3$

Dynamic Programming

- Assign a cost value $c_{i,j}^k \in \mathbb{N}$ for each shortcut $(p_i, p_j) \in G(\mathcal{C}, \varepsilon_k)$ at scale ε_k
- $c_{i,j}^{k}$ relates to the cost of including (p_i, p_j) in S_k
- Example: $\varepsilon_1 < \varepsilon_2 < \varepsilon_3$

Dynamic Program

$$c_{i,j}^{k} = \begin{cases} 1 & \text{if } k = 1\\ 1 + \min_{\pi \in \prod_{i,j}^{k-1}} \sum_{(p_{x}, p_{y}) \in \pi} c_{x,y}^{k-1} & \text{if } 1 < k \le m \end{cases}$$

TU/e Technische Eindhoven University

 $\prod_{i=1}^{k}$ denotes the set of all paths in $G(\mathcal{C}, \varepsilon_k)$ from p_i to p_j

Dynamic Program

$$c_{i,j}^{k} = \begin{cases} 1 & \text{if } k = 1\\ 1 + \min_{\pi \in \prod_{i,j}^{k-1}} \sum_{(p_{x}, p_{y}) \in \pi} c_{x,y}^{k-1} & \text{if } 1 < k \le m \end{cases}$$

 $\prod_{i,j}^{k}$ denotes the set of all paths in $G(\mathcal{C}, \varepsilon_k)$ from p_i to p_j

Algorithm

Construct simplifications from S_m down to S_1

- 1. Compute costs $c_{i,j}^k$ at scale ε_k
- 2. Compute shortest path P from p_i to
- p_j in $G(\mathcal{C}, \varepsilon_k)$ for all $(p_i, p_j) \in S_{k+1}$
- 3. Link P to obtain S_k

Algorithm

Running time

m times

Construct simplifications from S_m down to S_1

- 1. Compute costs $c_{i,j}^k$ at scale ε_k
- 2. Compute shortest path P from p_i to
- p_j in $G(\mathcal{C}, \varepsilon_k)$ for all $(p_i, p_j) \in S_{k+1}$
- 3. Link P to obtain S_k

• Employ the algorithm by [Chan and Chin, 1996]

• Runs in $O(n^2)$ time in the plane

Algorithm

Construct simplifications from S_m down to S_1

- 1. Compute costs $c_{i,j}^k$ at scale ε_k
- 2. Compute shortest path P from p_i to
- p_j in $G(\mathcal{C}, \varepsilon_k)$ for all $(p_i, p_j) \in S_{k+1}$
- 3. Link P to obtain S_k

Running time m times $O(n^2)$

- Run Dijkstra's algorithm on O(n) nodes of $G(\mathcal{C}, \varepsilon_k)$
- Dijkstra's algorithm runs in $O(n^2)$ time on G with integer weights

Algorithm

Construct simplifications from \mathcal{S}_m down to \mathcal{S}_1

- 1. Compute costs $c_{i,j}^k$ at scale ε_k
- 2. Compute shortest path *P* from p_i to p_i in $G(\mathcal{C}, \varepsilon_k)$ for all $(p_i, p_i) \in S_{k+1}$
- 3. Link P to obtain S_k

Running time m times $O(n^2)$ $O(n^3)$

• Employ the algorithm by [Chan and Chin, 1996]

Algorithm

Construct simplifications from \mathcal{S}_m down to \mathcal{S}_1

- 1. Compute costs $c_{i,j}^k$ at scale ε_k
- 2. Compute shortest path *P* from p_i to p_i in $G(\mathcal{C}, \varepsilon_k)$ for all $(p_i, p_i) \in S_{k+1}$
- 3. Link P to obtain S_k

Running time m times $O(n^2)$ $O(n^3)$

O(n)

Total Running Time

- Optimal progressive simplification computable in O(n³m) time
- Takes $O(n^5)$ time for continuous scaling

Algorithm

Running time

m times

 $O(n^2)$

 $O(n^3)$

Construct simplifications from S_m down to S_1

- 1. Compute costs $c_{i,j}^k$ at scale ε_k
- 2. Compute shortest path *P* from p_i to p_i in $G(\mathcal{C}, \varepsilon_k)$ for all $(p_i, p_i) \in S_{k+1}$
- 3. Link P to obtain S_k

O(n)

Conclusion

- An O(n³m) time algorithm for the progressive simplification problem
- works with various distance measures such as Hausdorff, Fréchet and area-based distances
- enables simplification for continuous scaling in $O(n^5)$ time

Conclusion

Further Results

- Technique to compute all shortcuts for a fixed ε in $O(n^2 \log n)$ time instead of $O(n^3)$ time
- Storage-efficient representation of the shortcut graph allowing to find shortest paths in $O(n \log n)$ time
- Experimental evaluation on a trajectory of a migrating vulture

Thank you for your attention.