Fine-Grained Analysis of Problems on Curves

Kevin Buchin
Maike Buchin
Maximilian Konzack
Wolfgang Mulzer
André Schulz

Technische Universiteit Eindhoven
University of Technology

Fréchet distance [Alt and Godau, 1995]
Minimize the maximal
distance between curves
P and Q

Upper bound [Agarwal et al., 2014] Running time $O\left(\frac{m n \log \log n}{\log n}\right)$ for the discrete Fréchet distance

Lower bound [Bringmann, 2014]
Discrete Fréchet distance cannot be computed in $O\left(n^{2-\varepsilon}\right)$ for any $\varepsilon>0$ unless the strong exponential time hypothesis fails

Fréchet Distance between k curves

How can we capture distances on a tuple of points? An alignment $\mathcal{C}=\left\langle\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}\right\rangle$ of the curves A_{1}, A_{2}, A_{3} $\begin{aligned} \mathcal{C}_{1} & =(0,0, \ldots, 0) \\ \mathcal{C}_{m} & =\left(n_{1}, n_{2}, \ldots, n_{k}\right)\end{aligned}$
$\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]$
or
$\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]+1$

Fréchet Distance between k curves

How can we capture distances on a tuple of points? An alignment $\mathcal{C}=\left\langle\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}\right\rangle$ of the curves A_{1}, A_{2}, A_{3} $\begin{aligned} \mathcal{C}_{1} & =(0,0, \ldots, 0) \\ \mathcal{C}_{m} & =\left(n_{1}, n_{2}, \ldots, n_{k}\right)\end{aligned}$
$\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]$
or
$\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]+1$

Fréchet Distance between k curves

How can we capture distances on a tuple of points? An alignment $\mathcal{C}=\left\langle\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}\right\rangle$ of the curves A_{1}, A_{2}, A_{3} $\begin{aligned} \mathcal{C}_{1} & =(0,0, \ldots, 0) \\ \mathcal{C}_{m} & =\left(n_{1}, n_{2}, \ldots, n_{k}\right)\end{aligned}$
$\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]$
or
$\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]+1$

Fréchet Distance between k curves

How can we capture distances on a tuple of points? An alignment $\mathcal{C}=\left\langle\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}\right\rangle$ of the curves A_{1}, A_{2}, A_{3} $\begin{aligned} \mathcal{C}_{1} & =(0,0, \ldots, 0) \\ \mathcal{C}_{m} & =\left(n_{1}, n_{2}, \ldots, n_{k}\right)\end{aligned}$
$\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]$
or
$\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]+1$

Fréchet Distance between k curves

How can we capture distances on a tuple of points? An alignment $\mathcal{C}=\left\langle\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}\right\rangle$ of the curves A_{1}, A_{2}, A_{3} $\begin{aligned} \mathcal{C}_{1} & =(0,0, \ldots, 0) \\ \mathcal{C}_{m} & =\left(n_{1}, n_{2}, \ldots, n_{k}\right)\end{aligned}$

$$
\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]
$$

or

$$
\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]+1
$$

Fréchet Distance between k curves

How can we capture distances on a tuple of points? An alignment $\mathcal{C}=\left\langle\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}\right\rangle$ of the curves A_{1}, A_{2}, A_{3} $\begin{aligned} \mathcal{C}_{1} & =(0,0, \ldots, 0) \\ \mathcal{C}_{m} & =\left(n_{1}, n_{2}, \ldots, n_{k}\right)\end{aligned}$
$\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]$
or
$\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]+1$

Fréchet Distance between k curves

How can we capture distances on a tuple of points? An alignment $\mathcal{C}=\left\langle\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}\right\rangle$ of the curves A_{1}, A_{2}, A_{3} $\begin{aligned} \mathcal{C}_{1} & =(0,0, \ldots, 0) \\ \mathcal{C}_{m} & =\left(n_{1}, n_{2}, \ldots, n_{k}\right)\end{aligned}$
$\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]$
or
$\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]+1$

Fréchet Distance between k curves

How can we capture distances on a tuple of points?
An alignment $\mathcal{C}=\left\langle\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}\right\rangle$ of the curves A_{1}, A_{2}, A_{3}

$$
\begin{aligned}
\mathcal{C}_{1} & =(0,0, \ldots, 0) \\
\mathcal{C}_{m} & =\left(n_{1}, n_{2}, \ldots, n_{k}\right)
\end{aligned}
$$

$$
\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]
$$

or

$$
\mathcal{C}_{i+1}[h]=\mathcal{C}_{i}[h]+1
$$

Discrete Fréchet distance: minimize distance over all coupled distances d_{C}

Upper bound [Dumitrescu and Rote, 2004]
Running time $O\left(n^{k}\right)$ for k polygonal curves

Curve Simplification

min-\# Simplification problem:

- Given a polygonal curve P and an $\varepsilon>0$ as an error threshold
- Objective: minimize the number of vertices in a simplification S

Curve Simplification

min-\# Simplification problem:

- Given a polygonal curve P and an $\varepsilon>0$ as an error threshold
- Objective: minimize the number of vertices in a simplification S

Curve Simplification

min-\# Simplification problem:

- Given a polygonal curve P and an
$\varepsilon>0$ as an error threshold

Curve Simplification

Upper bound [Chan and Chin, 1996] A min-\# simplification can be computed in $O\left(n^{2}\right)$ time in \mathbb{R}^{2}

Lower Bounds

1. Result

- No $O\left(n^{k-\varepsilon}\right)$ time algorithm for the discrete Fréchet distance on k curves for any $\varepsilon>0$ unless SETH fails

Lower Bounds

1. Result

- No $O\left(n^{k-\varepsilon}\right)$ time algorithm for the discrete Fréchet distance on k curves for any $\varepsilon>0$ unless SETH fails

2. Result

- No $O\left(n^{2-\varepsilon}\right)$ time algorithm for curve simplification with $d=\Omega(\log n)$ dimensions for any $\varepsilon>0$ unless SETH fails

Orthogonal Vectors

Proof idea

- Transform k Orthogonal Vectors to curves

1. Gadgets for coordinates
2. Synchronized walk of the composite curves

- Fréchet distance $d_{F}(\cdot) \leq 1$ iff. vectors are orthogonal

Orthogonal Vectors

Proof idea

- Transform k Orthogonal Vectors to curves

1. Gadgets for coordinates
2. Synchronized walk of the composite curves

- Fréchet distance $d_{F}(\cdot) \leq 1$ iff. vectors are orthogonal

$$
\begin{gathered}
\left(\begin{array}{c}
\alpha^{1} \\
\alpha^{2} \\
\vdots \\
\alpha^{k}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \ldots & 1 & 1
\end{array}\right) \\
\alpha^{1}, \alpha^{2}, \ldots, \alpha^{k} \text { are non-orthogonal }
\end{gathered}
$$

$$
\begin{gathered}
\left(\begin{array}{c}
\alpha^{1} \\
\alpha^{2} \\
\vdots \\
\alpha^{k}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \ldots & 1 & 1
\end{array}\right) \\
\alpha^{1}, \alpha^{2}, \ldots, \alpha^{k} \text { are orthogonal }
\end{gathered}
$$

Orthogonal Vectors

k Orthogonal Vectors

- Given $k\{0,1\}^{d}$ vectors $\alpha^{1}, \alpha^{2}, \ldots, \alpha^{k}$
- Do they satisfy

$$
\begin{gathered}
\sum_{h=1}^{d} \prod_{t \in[k]} \alpha^{t}[h]=0 ? \\
\left(\begin{array}{c}
\alpha^{1} \\
\alpha^{2} \\
\vdots \\
\alpha^{k}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \ldots & 1 & 1
\end{array}\right) \\
\alpha^{1}, \alpha^{2}, \ldots, \alpha^{k} \text { are orthogonal }
\end{gathered}
$$

Strong Exponential Time Hypothesis (SETH)

- For every ε there is a k such that
- SAT on k-CNF cannot be solved in subexpontial time

Coordinate Gadget

Encoding coordinates from k -Orthogonal Vectors $A_{1}, A_{2}, \ldots A_{k-1}$ and B by curves

Example for Coordinate Gadgets

$$
\begin{aligned}
& \alpha_{1}^{1}=0 \\
& \quad-0.5-\delta
\end{aligned}
$$

$$
\alpha_{1}^{2}=1
$$

$$
\beta_{1}=0
$$

$$
0.5+\delta
$$

Example for Coordinate Gadgets

$$
\alpha_{1}^{1}=0 \quad \alpha_{1}^{2}=1 \quad \beta_{1}=0
$$

$$
-0.5-\delta \quad C G_{1}(0)
$$

$$
0.5+\delta
$$

Example for Coordinate Gadgets

$$
\alpha_{1}^{1}=0 \quad \alpha_{1}^{2}=1
$$

$$
-0.5-\delta \quad C G_{1}(0) \quad C G_{2}(1)
$$

$$
0.5+\delta
$$

Example for Coordinate Gadgets

$$
\alpha_{1}^{1}=0 \quad \alpha_{1}^{2}=1 \quad \beta_{1}=0
$$

$$
-0.5-\delta, C G_{1}(0) \quad C G_{2}(1) \quad C G_{B}(0) \quad 0.5+\delta
$$

Example for Coordinate Gadgets

$$
\alpha_{1}^{1}=0 \quad \alpha_{1}^{2}=1 \quad \beta_{1}=0
$$

$$
-0.5-\delta \quad C G_{1}(0) \quad C G_{2}(1) \quad C G_{B}(0) \quad 0.5+\delta
$$

年

Proof idea

Reduction Construction

Proof idea

1. Simultaneous walk of curves $A_{1}, \ldots A_{k-1}$ from s to v_{A}

Reduction Construction

Proof idea

1. Simultaneous walk of curves $A_{1}, \ldots A_{k-1}$ from s to v_{A} 2. Curve B walks to v_{B} over s, v_{A}

Reduction Construction

Proof idea

1. Simultaneous walk of curves $A_{1}, \ldots A_{k-1}$ from s to v_{A}
2. Curve B walks to v_{B} over s, v_{A}
3. Synchronized traversal of all coordinate gadgets $C G_{*}$

Proof idea

1. Simultaneous walk of curves $A_{1}, \ldots A_{k-1}$ from s to v_{A}
2. Curve B walks to v_{B} over s, v_{A}
3. Synchronized traversal of all coordinate gadgets $C G_{*}$
4. Curves A_{1}, \ldots, A_{k-1} walk to t_{A} simultaneously

Proof idea

1. Simultaneous walk of curves $A_{1}, \ldots A_{k-1}$ from s to v_{A}
2. Curve B walks to v_{B} over s, v_{A}
3. Synchronized traversal of all coordinate gadgets $C G_{*}$
4. Curves A_{1}, \ldots, A_{k-1} walk to t_{A} simultaneously
5. First B terminates at s, then A_{1}, \ldots, A_{k-1}

Lower Bound on Curve Simplification TU/e $=$

Proof construction

- Reduction from 2 Orthogonal Vectors α, β in d dimensions
- to Curve Simplification in $d+1$ dimensions

Lower Bound on Curve Simplification TU/e

Proof construction

- Reduction from 2 Orthogonal Vectors α, β in d dimensions
- to Curve Simplification in $d+1$ dimensions

$\alpha=0, \beta=0$

$\alpha=0, \beta=1$
$\alpha=1, \beta=1$

Lower Bound on Curve Simplification

Proof construction

- Reduction from 2 Orthogonal Vectors α, β in d dimensions
- to Curve Simplification in $d+1$ dimensions

$$
\alpha=0, \beta=0
$$

$\alpha=0, \beta=1$

$\alpha=1, \beta=1$

Proof idea

- Checkpoints q are dropped within the simplification iff. α, β are orthogonal
- Simplification consists of 4 vertices iff. α, β are orthogonal
- Simplification consists of at least 5 vertices iff. α, β are non-orthogonal

Conclusion

1. Result

- No $O\left(n^{k-\varepsilon}\right)$ time algorithm for the discrete Fréchet distance on k curves for any $\varepsilon>0$ unless SETH fails

2. Result

- No $O\left(n^{2-\varepsilon}\right)$ time algorithm for curve simplification with $d=\Omega(\log n)$ dimensions for any $\varepsilon>0$ unless SETH fails

Conclusion

Open problems

- Lower bound for simplification in \mathbb{R}^{2} or \mathbb{R}^{3}
- Upper bound for simplification in \mathbb{R}^{2} or \mathbb{R}^{3}
- Lower bound for Fréchet distance on k curves with dimension $d=1$

Thank you for your attention.

Simplification: Orthogonal Case

$$
\begin{array}{ll}
L_{\infty}: \varepsilon=1, \delta=2, \delta^{\prime}=0.5 \\
\alpha=\langle 0,1,0\rangle & \hat{\alpha}=\langle(0,-2),(1,-2),(0,-2)\rangle \\
\beta=\langle 1,0,0\rangle & \hat{\beta}=\langle(1,2),(0,2),(0,2)\rangle \\
s=e=(0,0) & q=(-0.5,0) \\
\hat{\beta}_{2}=\hat{\beta}_{3}
\end{array}
$$

Simplification: Orthogonal Case

$$
\begin{array}{ll}
L_{\infty}: \varepsilon=1, \delta=2, \delta^{\prime}=0.5 \\
\alpha=\langle 0,1,0\rangle \\
\beta=\langle 1,0,0\rangle \\
s=e=(0,0) & \hat{\alpha}=\langle(0,-2),(1,-2),(0,-2)\rangle \\
\begin{array}{l}
\text { Simplification } \\
\text { contains } 4 \text { vertices iff. } \\
\alpha \text { and } \beta \text { are } \\
\text { orthogonal }
\end{array} & \begin{array}{l}
q=\langle(1,2),(0,2),(0,2)\rangle
\end{array} \\
\hat{\alpha}_{1}=\hat{\alpha}_{3}=\hat{\beta}_{3}
\end{array}
$$

Simplification: Non-orthogonal Case

$L_{\infty}: \varepsilon=1, \delta=2, \delta^{\prime}=0.5$
$\alpha=\langle 1,0,1\rangle$
$\hat{\alpha}=\langle(1,-2),(0,-2),(1,-2)\rangle$
$\beta=\langle 0,0,1\rangle$
$s=e=(0,0)$

$\hat{\beta}=\langle(0,2),(0,2),(1,2)\rangle$
$q=(-0.5,0)$

Simplification: Non-orthogonal Case

$$
\begin{array}{ll}
L_{\infty}: \varepsilon=1, \delta=2, \delta^{\prime}=0.5 & \\
\alpha=\langle 1,0,1\rangle & \hat{\alpha}=\langle(1,-2),(0,-2),(1,-2)\rangle \\
\beta=\langle 0,0,1\rangle & \hat{\beta}=\langle(0,2),(0,2),(1,2)\rangle \\
s=e=(0,0) & q=(-0.5,0) \\
\begin{array}{l}
\text { Simplification } \\
\text { contains at least } 5 \\
\text { vertices of. } \alpha \text { and } \beta \\
\text { are non-orthogonal }
\end{array} & \hat{\beta}_{1}=\hat{\beta}_{2}
\end{array}
$$

