Fine-Grained Analysis of Problems on Curves

Kevin Buchin Maike Buchin *Maximilian Konzack* Wolfgang Mulzer André Schulz

Fréchet Distance between two curves TU/e Technische Universiteit University of Technische Universiteit

Minimize the maximal distance between curves P and QUpper bound [Agarwal et al., 2014] Running time $O(\frac{mn \log \log n}{\log n})$ for the discrete Fréchet distance

Lower bound [Bringmann, 2014]

Discrete Fréchet distance cannot be computed in $O(n^{2-\varepsilon})$ for any $\varepsilon > 0$ unless the strong exponential time hypothesis fails

How can we capture distances on a tuple of points? An alignment $C = \langle C_1, ..., C_m \rangle$ of the curves A_1, A_2, A_3 $C_1 = (0, 0, ..., 0)$ $C_{m} = (n_1, n_2, ..., n_k)$ $C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$

TU/e Technische Eindhoven University of

How can we capture distances on a tuple of points? An alignment $C = \langle C_1, ..., C_m \rangle$ of the curves A_1, A_2, A_3 $C_1 = (0, 0, ..., 0)$ $C_{m} = (n_1, n_2, ..., n_k)$ $C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$

TU/e Technische Eindhoven University

How can we capture distances on a tuple of points? An alignment $C = \langle C_1, ..., C_m \rangle$ of the curves A_1, A_2, A_3 $C_1 = (0, 0, ..., 0)$ $C_{m} = (n_1, n_2, ..., n_k)$ $C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$

TU/e Technische Eindhoven University of

How can we capture distances on a tuple of points? An alignment $C = \langle C_1, ..., C_m \rangle$ of the curves A_1, A_2, A_3 $C_1 = (0, 0, ..., 0)$ $C_{m} = (n_1, n_2, ..., n_k)$ $C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$

TU/e Technische Eindhoven University of

How can we capture distances on a tuple of points? An alignment $C = \langle C_1, ..., C_m \rangle$ of the curves A_1, A_2, A_3 $C_1 = (0, 0, ..., 0)$ $C_{m} = (n_1, n_2, ..., n_k)$ $C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$

TU/e Technische Eindhoven University

How can we capture distances on a tuple of points? An alignment $C = \langle C_1, ..., C_m \rangle$ of the curves A_1, A_2, A_3 $C_1 = (0, 0, ..., 0)$ $C_{m} = (n_1, n_2, ..., n_k)$ $C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$

TU/e Technische Eindhoven University

How can we capture distances on a tuple of points? An alignment $C = \langle C_1, ..., C_m \rangle$ of the curves A_1, A_2, A_3 $C_1 = (0, 0, ..., 0)$ $C_{m} = (n_1, n_2, ..., n_k)$ $C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$

TU/e Technische Eindhoven University of

How can we capture distances on a tuple of points? An alignment $C = \langle C_1, ..., C_m \rangle$ of the curves A_1, A_2, A_3 $C_1 = (0, 0, ..., 0)$ $C_{m} = (n_1, n_2, ..., n_k)$ $C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$

TU/e Technische Eindhoven University

Discrete Fréchet distance: minimize distance over all coupled distances $d_{\mathcal{C}}$

Upper bound [Dumitrescu and Rote, 2004] Running time $O(n^k)$ for k polygonal curves

Curve Simplification

min-# Simplification problem:

- Given a polygonal curve P and an $\varepsilon > 0$ as an error threshold
- Objective: minimize the number of vertices in a simplification S

min-# Simplification problem:

- Given a polygonal curve P and an $\varepsilon > 0$ as an error threshold
- Objective: minimize the number of vertices in a simplification S

min-# Simplification problem:

• Given a polygonal curve P and an

 $\varepsilon > 0$ as an error threshold

Curve Simplification

Upper bound [Chan and Chin, 1996] A min-# simplification can be computed in $O(n^2)$ time in \mathbb{R}^2

> Higher dimensions [Barequet et al., 2002] For the L_1 or L_∞ metric, a min-# simplification can be computed in $O(n^2)$ time

Lower Bounds

1. Result

 No O(n^{k-ε}) time algorithm for the discrete Fréchet distance on k curves for any ε > 0 unless SETH fails

Lower Bounds

1. Result

 No O(n^{k-ε}) time algorithm for the discrete Fréchet distance on k curves for any ε > 0 unless SETH fails

IN REAL PROPERTY.

.....

2. Result

• No $O(n^{2-\varepsilon})$ time algorithm for curve simplification with $d = \Omega(\log n)$ dimensions for any $\varepsilon > 0$ unless SETH fails

- Transform k Orthogonal Vectors to curves
 - 1. Gadgets for coordinates
 - 2. Synchronized walk of the composite curves
- Fréchet distance $d_F(\cdot) \leq 1$ iff. vectors are orthogonal

Proof idea

- Transform k Orthogonal Vectors to curves
 - 1. Gadgets for coordinates
 - 2. Synchronized walk of the composite curves
- Fréchet distance $d_F(\cdot) \leq 1$ iff. vectors are orthogonal

$$\begin{pmatrix} \alpha^{1} \\ \alpha^{2} \\ \vdots \\ \alpha^{k} \end{pmatrix} = \begin{pmatrix} 0 & 1 & \dots & 0 & 1 \\ 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \dots & 1 & 1 \end{pmatrix}$$

 $\alpha^1, \alpha^2, \ldots, \alpha^k$ are non-orthogonal

Orthogonal Vectors

k Orthogonal Vectors

- Given $k \{0, 1\}^d$ vectors $\alpha^1, \alpha^2, \dots, \alpha^k$
- Do they satisfy

$$\sum_{h=1}^{d} \prod_{t \in [k]} \alpha^{t}[h] = 0?$$

$$\begin{pmatrix} \alpha^{1} \\ \alpha^{2} \\ \vdots \\ \alpha^{k} \end{pmatrix} = \begin{pmatrix} 0 & 1 & \dots & 0 & 1 \\ 1 & 0 & \dots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \dots & 1 & 1 \end{pmatrix}$$

$$\alpha^{1}, \alpha^{2}, \dots, \alpha^{k} \text{ are orthogonal}$$

Strong Exponential Time Hypothesis (SETH)

- For every ε there is a k such that
- SAT on *k*-CNF cannot be solved in subexpontial time

Coordinate Gadget

Encoding coordinates from k-Orthogonal Vectors A_1, A_2, \dots, A_{k-1} and B by curves

Technische Universiteit **Eindhoven** University of Technology

TU/e

Proof idea

TU/e

Proof idea

1. Simultaneous walk of curves A_1, \dots, A_{k-1} from s to v_A

TU/e Technische Universite Eindhoven University of Technol

- 1. Simultaneous walk of curves A_1, \dots, A_{k-1} from s to v_A
- 2. Curve *B* walks to v_B over *s*, v_A

- 1. Simultaneous walk of curves A_1, \dots, A_{k-1} from s to v_A
- 2. Curve *B* walks to v_B over *s*, v_A
- 3. Synchronized traversal of all coordinate gadgets CG_*

- 1. Simultaneous walk of curves A_1, \dots, A_{k-1} from s to v_A
- 2. Curve *B* walks to v_B over *s*, v_A
- 3. Synchronized traversal of all coordinate gadgets CG_*
- 4. Curves A_1, \ldots, A_{k-1} walk to t_A simultaneously

- 1. Simultaneous walk of curves A_1, \dots, A_{k-1} from s to v_A
- 2. Curve *B* walks to v_B over *s*, v_A
- 3. Synchronized traversal of all coordinate gadgets CG_*
- 4. Curves A_1, \ldots, A_{k-1} walk to t_A simultaneously
- 5. First *B* terminates at *s*, then A_1, \ldots, A_{k-1}

Lower Bound on Curve Simplification TU/e Technische Universiteit Eindhoven University of Technology

Proof construction

- Reduction from 2 Orthogonal Vectors α , β in d dimensions
- to Curve Simplification in d + 1 dimensions

Lower Bound on Curve Simplification TU/e Technische Universiteit University of Technology

Proof construction

- Reduction from 2 Orthogonal Vectors α , β in d dimensions
- to Curve Simplification in d + 1 dimensions

Lower Bound on Curve Simplification TU/e Technische Universiteit University of Technology

Proof construction

- Reduction from 2 Orthogonal Vectors α , β in d dimensions
- to Curve Simplification in d + 1 dimensions

- Checkpoints q are dropped within the simplification iff. α , β are orthogonal
- Simplification consists of 4 vertices iff. α , β are orthogonal
- Simplification consists of at least 5 vertices iff. α , β are non-orthogonal

Conclusion

1. Result

 No O(n^{k-ε}) time algorithm for the discrete Fréchet distance on k curves for any ε > 0 unless SETH fails

IN REAL PROPERTY.

.....

2. Result

• No $O(n^{2-\varepsilon})$ time algorithm for curve simplification with $d = \Omega(\log n)$ dimensions for any $\varepsilon > 0$ unless SETH fails

Open problems

- Lower bound for simplification in \mathbb{R}^2 or \mathbb{R}^3
- Upper bound for simplification in \mathbb{R}^2 or \mathbb{R}^3
- Lower bound for Fréchet distance on k curves with dimension d = 1

Thank you for your attention.

Simplification: Orthogonal Case

TU/e Eindhoven University of Technology

Simplification: Orthogonal Case

Simplification: Non-orthogonal Case TU/e Technische Universiteit Eindhoven University of Technolog

Simplification: Non-orthogonal Case TU/e Technische Universiteit Eindhoven University of Technolog

