Fine-Grained Analysis of Problems on Curves

Kevin Buchin
Maike Buchin
Maximilian Konzack
Wolfgang Mulzer
André Schulz
Fréchet Distance between two curves

Fréchet distance [Alt and Godau, 1995]

Minimize the maximal distance between curves P and Q

Upper bound [Agarwal et al., 2014]

Running time $O\left(\frac{mn \log \log n}{\log n}\right)$ for the discrete Fréchet distance

Lower bound [Bringmann, 2014]

Discrete Fréchet distance cannot be computed in $O(n^{2-\varepsilon})$ for any $\varepsilon > 0$ unless the strong exponential time hypothesis fails
How can we capture distances on a tuple of points?

An alignment $C = \langle C_1, \ldots, C_m \rangle$ of the curves A_1, A_2, A_3

$C_1 = (0, 0, \ldots, 0)$

$C_m = (n_1, n_2, \ldots, n_k)$

$C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$
Fréchet Distance between k curves

How can we capture distances on a tuple of points?

An alignment $C = \langle C_1, \ldots, C_m \rangle$ of the curves A_1, A_2, A_3

$C_1 = (0, 0, \ldots, 0)$

$C_m = (n_1, n_2, \ldots, n_k)$

$C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$
Fréchet Distance between k curves

How can we capture distances on a tuple of points?

An alignment $\mathcal{C} = \langle C_1, \ldots, C_m \rangle$ of the curves A_1, A_2, A_3

$C_1 = (0, 0, \ldots, 0)$

$C_m = (n_1, n_2, \ldots, n_k)$

$C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$
Fréchet Distance between k curves

How can we capture distances on a tuple of points?

An alignment $C = \langle C_1, \ldots, C_m \rangle$ of the curves A_1, A_2, A_3

$C_1 = (0, 0, \ldots, 0)$

$C_m = (n_1, n_2, \ldots, n_k)$

$C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$
Fréchet Distance between k curves

How can we capture distances on a tuple of points?

An alignment $C = \langle C_1, \ldots, C_m \rangle$ of the curves A_1, A_2, A_3

$C_1 = (0, 0, \ldots, 0)$

$C_m = (n_1, n_2, \ldots, n_k)$

$C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$
Fréchet Distance between \(k \) curves

How can we capture distances on a tuple of points?

An alignment \(C = \langle C_1, \ldots, C_m \rangle \) of the curves \(A_1, A_2, A_3 \)

\(C_1 = (0, 0, \ldots, 0) \)

\(C_m = (n_1, n_2, \ldots, n_k) \)

\(C_{i+1}[h] = C_i[h] \)

or

\(C_{i+1}[h] = C_i[h] + 1 \)
Fréchet Distance between k curves

How can we capture distances on a tuple of points?

An alignment $C = \langle C_1, \ldots, C_m \rangle$ of the curves A_1, A_2, A_3

$C_1 = (0, 0, \ldots, 0)$
$C_m = (n_1, n_2, \ldots, n_k)$

$C_{i+1}[h] = C_i[h]$ or $C_{i+1}[h] = C_i[h] + 1$
Fréchet Distance between k curves

How can we capture distances on a tuple of points?

An alignment $C = \langle C_1, \ldots, C_m \rangle$ of the curves A_1, A_2, A_3

$C_1 = (0, 0, \ldots, 0)$

$C_m = (n_1, n_2, \ldots, n_k)$

$C_{i+1}[h] = C_i[h]$

or

$C_{i+1}[h] = C_i[h] + 1$

Discrete Fréchet distance: minimize distance over all coupled distances d_C

Upper bound [Dumitrescu and Rote, 2004]

Running time $O(n^k)$ for k polygonal curves
min-# Simplification problem:
• Given a polygonal curve P and an $\varepsilon > 0$ as an error threshold
• Objective: minimize the number of vertices in a simplification S
min-\# Simplification problem:

- Given a polygonal curve \(P \) and an \(\varepsilon > 0 \) as an error threshold
- Objective: minimize the number of vertices in a simplification \(S \)
min-# Simplification problem:
• Given a polygonal curve P and an $\varepsilon > 0$ as an error threshold
Upper bound [Chan and Chin, 1996]
A min-# simplification can be computed in $O(n^2)$ time in \mathbb{R}^2

Higher dimensions [Barequet et al., 2002]
For the L_1 or L_∞ metric, a min-# simplification can be computed in $O(n^2)$ time
1. Result

- No $O(n^{k-\varepsilon})$ time algorithm for the discrete Fréchet distance on k curves for any $\varepsilon > 0$ unless SETH fails.
Lower Bounds

1. Result
 - No \(O(n^{k-\varepsilon}) \) time algorithm for the discrete Fréchet distance on \(k \) curves for any \(\varepsilon > 0 \) unless SETH fails

2. Result
 - No \(O(n^{2-\varepsilon}) \) time algorithm for curve simplification with \(d = \Omega(\log n) \) dimensions for any \(\varepsilon > 0 \) unless SETH fails
Orthogonal Vectors

Proof idea

- Transform k Orthogonal Vectors to curves
 1. Gadgets for coordinates
 2. Synchronized walk of the composite curves
- Fréchet distance $d_F(\cdot) \leq 1$ iff. vectors are orthogonal
Orthogonal Vectors

Proof idea

- Transform k Orthogonal Vectors to curves
 1. Gadgets for coordinates
 2. Synchronized walk of the composite curves
- Fréchet distance $d_F(\cdot) \leq 1$ iff. vectors are orthogonal

\[
\begin{pmatrix}
\alpha^1 \\
\alpha^2 \\
\vdots \\
\alpha^k
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \ldots & 1 & 1
\end{pmatrix}
\]

$\alpha^1, \alpha^2, \ldots, \alpha^k$ are non-orthogonal
Orthogonal Vectors

\[
\begin{pmatrix}
\alpha^1 \\
\alpha^2 \\
\vdots \\
\alpha^k
\end{pmatrix}
= \begin{pmatrix}
0 & 1 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \ldots & 1 & 1
\end{pmatrix}
\]

\(\alpha^1, \alpha^2, \ldots, \alpha^k\) are orthogonal
Orthogonal Vectors

\(k \) Orthogonal Vectors

- Given \(k \ \{0, 1\}^d \) vectors \(\alpha^1, \alpha^2, \ldots, \alpha^k \)
- Do they satisfy

\[
\sum_{h=1}^{d} \prod_{t \in [k]} \alpha^t[h] = 0?
\]

\[
\begin{pmatrix}
\alpha^1 \\
\alpha^2 \\
\vdots \\
\alpha^k \\
\end{pmatrix}
= \begin{pmatrix}
0 & 1 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \ldots & 1 & 1 \\
\end{pmatrix}
\]

\(\alpha^1, \alpha^2, \ldots, \alpha^k \) are orthogonal

Strong Exponential Time Hypothesis (SETH)

- For every \(\varepsilon \) there is a \(k \) such that
- SAT on \(k \)-CNF cannot be solved in subexponential time
Encoding coordinates from k-Orthogonal Vectors $A_1, A_2, \ldots, A_{k-1}$ and B by curves

$-0.5 - \delta \quad -0.5 - \delta \quad 0.5 + \delta$

$CG_i(0) \quad CG_i(1) \quad CG_B(0) \quad CG_B(1)$
Example for Coordinate Gadgets

\[\alpha_1^1 = 0 \]
\[\alpha_2^1 = 1 \]
\[\beta_1 = 0 \]

\[-0.5 - \delta \]
\[0.5 + \delta \]
Example for Coordinate Gadgets

\[\alpha_1^1 = 0 \]
\[\alpha_2^2 = 1 \]
\[\beta_1 = 0 \]

\[-0.5 - \delta \quad CG_1(0) \quad 0.5 + \delta \]
Example for Coordinate Gadgets

\[\alpha_1^1 = 0 \quad \alpha_2^1 = 1 \quad \beta_1 = 0 \]

\[-0.5 - \delta \quad CG_1(0) \quad CG_2(1) \quad 0.5 + \delta \]

\[-0.5 \quad 0.5 \]
Example for Coordinate Gadgets

\(\alpha_1^1 = 0 \)
\(\alpha_1^2 = 1 \)
\(\beta_1 = 0 \)

\(-0.5 - \delta \quad \beta_1 = 0 \quad 0.5 + \delta \)

\(CG_1(0) \quad CG_2(1) \quad CG_B(0) \)
Example for Coordinate Gadgets

\[\alpha_1^1 = 0 \]

\[\alpha_1^2 = 1 \]

\[\beta_1 = 0 \]

\[-0.5 - \delta \]

\[CG_1(0) \]

\[CG_2(1) \]

\[CG_B(0) \]

\[0.5 + \delta \]

\[d_F(CG_1(0), CG_2(1), CG_B(0)) \leq 1 \]
Proof idea

\[s, t_A, t_B \in CG_* \]

\[v_A, v_B \]
Proof idea

1. Simultaneous walk of curves $A_1, ... A_{k-1}$ from s to v_A
Proof idea

1. Simultaneous walk of curves A_1, \ldots, A_{k-1} from s to v_A
2. Curve B walks to v_B over s, v_A
Proof idea

1. Simultaneous walk of curves $A_1, ... A_{k-1}$ from s to v_A
2. Curve B walks to v_B over s, v_A
3. Synchronized traversal of all coordinate gadgets CG_*
Proof idea

1. Simultaneous walk of curves A_1, \ldots, A_{k-1} from s to v_A
2. Curve B walks to v_B over s, v_A
3. Synchronized traversal of all coordinate gadgets CG_*
4. Curves A_1, \ldots, A_{k-1} walk to t_A simultaneously
Proof idea

1. Simultaneous walk of curves A_1, \ldots, A_{k-1} from s to v_A
2. Curve B walks to v_B over s, v_A
3. Synchronized traversal of all coordinate gadgets CG^*
4. Curves A_1, \ldots, A_{k-1} walk to t_A simultaneously
5. First B terminates at s, then A_1, \ldots, A_{k-1}
Proof construction

- Reduction from 2 Orthogonal Vectors α, β in d dimensions
- to Curve Simplification in $d + 1$ dimensions
Proof construction

- Reduction from 2 Orthogonal Vectors α, β in d dimensions
- to Curve Simplification in $d + 1$ dimensions

- $\alpha = 0, \beta = 0$
- $\alpha = 0, \beta = 1$
- $\alpha = 1, \beta = 1$
Proof construction

- Reduction from 2 Orthogonal Vectors α, β in d dimensions
- to Curve Simplification in $d + 1$ dimensions

Proof idea

- Checkpoints q are dropped within the simplification iff. α, β are orthogonal
- Simplification consists of 4 vertices iff. α, β are orthogonal
- Simplification consists of at least 5 vertices iff. α, β are non-orthogonal
Conclusion

1. Result
 - No $O(n^{k-\varepsilon})$ time algorithm for the discrete Fréchet distance on k curves for any $\varepsilon > 0$ unless SETH fails

2. Result
 - No $O(n^{2-\varepsilon})$ time algorithm for curve simplification with $d = \Omega(\log n)$ dimensions for any $\varepsilon > 0$ unless SETH fails
Open problems

- Lower bound for simplification in \mathbb{R}^2 or \mathbb{R}^3
- Upper bound for simplification in \mathbb{R}^2 or \mathbb{R}^3
- Lower bound for Fréchet distance on k curves with dimension $d = 1$

Thank you for your attention.
Simplification: Orthogonal Case

$L_\infty: \varepsilon = 1, \delta = 2, \delta' = 0.5$

$\alpha = \langle 0, 1, 0 \rangle$
$\beta = \langle 1, 0, 0 \rangle$
$s = e = (0, 0)$

$\hat{\alpha} = \langle (0, -2), (1, -2), (0, -2) \rangle$
$\hat{\beta} = \langle (1, 2), (0, 2), (0, 2) \rangle$
$q = (-0.5, 0)$
Simplification: Orthogonal Case

$L_\infty : \varepsilon = 1, \delta = 2, \delta' = 0.5$

$\alpha = \langle 0, 1, 0 \rangle$

$\beta = \langle 1, 0, 0 \rangle$

$s = e = (0, 0)$

$\hat{\alpha} = \langle (0, -2), (1, -2), (0, -2) \rangle$

$\hat{\beta} = \langle (1, 2), (0, 2), (0, 2) \rangle$

$q = (-0.5, 0)$

Simplification contains 4 vertices iff. α and β are orthogonal
Simplification: Non-orthogonal Case

L_{∞}: $\epsilon = 1$, $\delta = 2$, $\delta' = 0.5$

$\alpha = \langle 1, 0, 1 \rangle$

$\beta = \langle 0, 0, 1 \rangle$

$s = e = (0, 0)$

$\hat{\alpha} = \langle 1, -2, 0, -2, 1, -2 \rangle$

$\hat{\beta} = \langle 0, 2, 0, 2, 1, 2 \rangle$

$q = (-0.5, 0)$
Simplification: Non-orthogonal Case

$L_\infty : \varepsilon = 1, \delta = 2, \delta' = 0.5$

$\alpha = \langle 1, 0, 1 \rangle$
$\beta = \langle 0, 0, 1 \rangle$
$s = e = (0, 0)$

$\hat{\alpha} = \langle (1, -2), (0, -2), (1, -2) \rangle$
$\hat{\beta} = \langle (0, 2), (0, 2), (1, 2) \rangle$
$q = (-0.5, 0)$

Simplification contains at least 5 vertices iff. α and β are non-orthogonal.