Low-Crossing Spanning Trees

An Alternative Proof and Experiments

Panos Giannopoulos Maximilian Konzack Wolfgang Mulzer

March 3-5, 2014
EuroCG 2014, Ein-Gedi, Israel

Technische Universiteit
Eindhoven
University of Technology

Spanning Trees with Low Crossing Number

Our Results

(1) Simple proof on low-crossing spanning trees
(2) A new heuristic to compute those trees
(3) Experimental results on

- artificial data
- real TSP instances from TSPLIB

What is a crossing?

What is a Low-crossing Spanning Tree?

A spanning tree F with crossing number 2

Is there only one optimum?

Another spanning tree F with crossing number 2

Is this an optimum?

Non optimal spanning tree F with crossing number 3

Preliminaries

Definition (Crossing Number)

- P : a planar point set in general position
- T : a spanning tree for P
- crossing number of T : maximum number of edges in T that can be intersected

Fact

- P always has a spanning tree with crossing number $O(\sqrt{n})$ [Chazelle, 1989] using iterative reweighting
- NP-hardness of computing the optimal tree [Fekete, 2008]

Previous Work

- Heuristic on iterative LP-rounding [Fekete, 2008]
- Iterative randomized rounding while solving a certain LP [Har-Peled, 2009]

Existence of Low Crossing Trees

Iterative Rounding [Har-Peled, 2009]

(1) Selecting edges from LP formulation
(2) Forming a spanning tree

Input: P, L

Intermediate Step

LPs for the Proof

Summary

- Primal models a graph with $O(\sqrt{n})$ crossing number
- Each point $p \in P$ has an incident edge

Primal

$$
\begin{aligned}
\sum_{p q \in E_{\ell}} x_{p q} \leq \sqrt{n} & \forall \ell \in L_{P} \\
\sum_{p q \in E_{P}} x_{p q} \geq 1 & \forall p \in P \\
x_{p q} \geq 0 & \forall p q \in E_{P}
\end{aligned}
$$

Notation

(1) E_{P} : set of line segments $p q$ with $p \neq q \in P$
(2) L_{P} : set of representative lines
(3) For $\ell \in L: E_{\ell} \subseteq E_{P}$ set of all edges intersecting ℓ
(9) For $p q \in E_{P}: L_{p q} \subseteq L_{P}$ set of lines intersecting $p q$

Notion of the Proof

Our Results

- A shorter proof
- Simplified Primal-Dual LP formulation from [Har-Peled, 2009]
- Using Farkas' Lemma

Lemma (Farkas' Lemma)
Let A be a rational $m \times n$ matrix and $b \in \mathbb{Q}^{m}$. Either
(1) there is a vector $x \in \mathbb{Q}^{n}$ satisfying $A x \leq b, x \geq 0$, or
(2) there is a vector $y \in \mathbb{Q}^{m}$ satisfying $A^{T} y \geq 0, b^{T} y<0, y \geq 0$.

Idea

- Show infeasibility of Dual LP by contradiction
- Due to Farkas' Lemma, Primal must be feasible

Overview of Algorithms

Approximation Algorithms

IterReweighting Popular framework [Welzl, 1992]

- Weighting of lines and edges
- Choosing iteratively lightest edge

Har-Peled LP Adjusted LP from proof [Har-Peld, 2009]
IterLP-rounding LP from [Fekete, 2008]

- selecting in each iteration one suitable edge
- using exponential number of constraints

A new heuristic: Connected Components Approach

- adapted from IterLP-rounding
- with polynomial many constraints

Connected Components Heuristics

Notation

- LP models only edges among the connected components \mathcal{C}
- $E(\mathcal{C})$ are these edges

LP

$$
\begin{aligned}
\text { s. t. } \sum_{p q \in E(\mathcal{C})}^{\operatorname{minimize} t} x_{p q}=|\mathcal{C}|-1 & \\
\sum_{p q \in E(\mathcal{C}): p \in C, q \notin C} x_{p q} \geq 1 & \forall C \in \mathcal{C} \\
\sum_{p q \in E(\mathcal{C}): p q \cap \ell \neq \emptyset} x_{p q} \leq t & \forall \ell \in L \\
x_{p q} \geq 0 & \forall p q \in E(\mathcal{C})
\end{aligned}
$$

Data Setting

P uniformly at random from integer $[n] \times[n]$ grid perturbed by an ε

All lines

$$
L=L_{P},|L|=\Theta\left(n^{2}\right)
$$

IterReweighting on $|P|=20$ with all lines

Random lines

L of size $\Theta(\sqrt{n})$

IterReweighting on $|P|=20$ with random lines

Experimental Results on Artificial Data

All lines

Random lines

- All algorithms produce a crossing number $O(\sqrt{n})$
- IterReweighting yields a crossing number lower than $O(\sqrt{n})$ for random lines

Average Crossing Number on Artificial Data

Average crossing number on random points with random lines

- The number of all crossings over the number of lines
- Best results by IterReweighting and Connected Components
- Yielding an average crossing number of $O(\log (n))$

Summary

(1) Alternative proof on existence of low-crossing spanning trees with crossing number $O(\sqrt{n})$
(2) A new heuristic competing with existing approaches
(3) Experimental results on

- artificial data
- real TSP instances from TSPLIB

Thank you.

Oscillation of IterLP-rounding

- Skipping of heavy weight edges might influence crossings
- Only effects IterLP-rounding
- Input data: Random points with random lines

Fekete et. al. IP

IP:
minimize t such that $\sum_{i j \in E_{P}} x_{i j}=n-1$

$$
\begin{aligned}
& \sum_{i j \in \delta(S)} x_{i j} \geq 1 \forall \emptyset \neq S \\
& \sum_{E E P: i j \cap \ell \neq \emptyset} x_{i j} \leq t \\
& x_{i j} \in\{0,1\} \\
& \forall \ell \in L \\
&
\end{aligned}
$$

Iterative Reweighting

Algorithm

IterReweighting(G, L)
$1 \quad i \leftarrow 1$
$2 F \leftarrow \emptyset$
$3 \mathcal{C} \leftarrow\{\{1\},\{2\}, \ldots\{n\}\}$
4 while $|\mathcal{C}|>1$
5 do $n_{i-1}(I) \leftarrow|\{e \in F \mid e \cap \ell \neq \emptyset\}| \quad \forall \ell \in L$
$6 \quad w_{i-1}(I) \leftarrow 2^{n_{i-1}(I)} \quad \forall \ell \in L$
$7 \quad w_{i-1}(e) \leftarrow \sum_{l \in L: \in \cap \ell \neq \emptyset} w_{i-1}(I) \quad \forall e \in \mathrm{E}(\mathcal{C})$
$8 \quad i j \leftarrow \arg \min \left\{w_{i-1}(p q)\right\}$ $p q \in \mathrm{E}(\mathcal{C})$
$9 \quad F \leftarrow F \cup\{i j\}$
$10 \quad \mathcal{C} \leftarrow \operatorname{Merge}(\mathrm{C}(i), \mathrm{C}(j))$
$11 \quad i \leftarrow i+1$
12 return F

Har-Peled's generic LP

LP for set systems with bounded VC dimension:

$$
\begin{align*}
\max \sum_{p q \in E_{p}} y_{p q} & \tag{6}\\
\text { such that } \sum_{p q \in E_{p}:|p q \cap S|=1} y_{p q} \leq t & \forall S \in \mathcal{F} \tag{7}\\
\sum_{q \in P: q \neq p} y_{p q} \geq 1 & \forall p \in P \tag{8}\\
y_{p q} \geq 0 & \forall p q \in E_{P} \tag{9}
\end{align*}
$$

What is the average crossing number?

Definition

The average crossing number for a spanning tree F is defined by:

$$
\varnothing \operatorname{cross}(F):=\frac{1}{|L|} \sum_{\ell \in L}|\{p q \in F \mid p q \cap \ell \neq \emptyset\}|
$$

