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Abstract
Simplifying polygonal curves at different levels of detail is an important problem with many
applications. Existing geometric optimization algorithms are only capable of minimizing the
complexity of a simplified curve for a single level of detail. We present an O(n3m)-time algorithm
that takes a polygonal curve of n vertices and produces a set of consistent simplifications for m
scales while minimizing the cumulative simplification complexity. This algorithm is compatible
with distance measures such as the Hausdorff, the Fréchet and area-based distances, and enables
simplification for continuous scaling in O(n5) time. To speed up this algorithm in practice, we
present new techniques for constructing and representing so-called shortcut graphs. Experimental
evaluation of these techniques on trajectory data reveals a significant improvement of using
shortcut graphs for progressive and non-progressive curve simplification, both in terms of running
time and memory usage.
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1 Introduction

Given a polygonal curve as input, the curve simplification problem asks for a polygonal curve
that approximates the input well using as few vertices as possible. Because of the importance
of data reduction, curve simplification has a wide range of applications. Cartography is
such an application, where the visual representation of line features like rivers, roads, and
region boundaries needs to be reduced. Most maps nowadays are interactive and incorporate
zooming, which requires curve simplification that facilitates different levels of detail. A
naive approach would be to simplify each zoom level independently. This, however, has the
drawback that the simplifications are not consistent between different scales, resulting in
unnecessary flickering when zooming. Therefore, we require progressive simplification, that
is, a series of simplifications for which the level of detail is progressively increased for higher
zoom-levels. This is shown in Figure 1.

Progressive simplifications are used in cartography [13]. Existing algorithms for progressive
simplification (e.g. [5]) work by simplifying the input curve, then simplifying this simplification,
and so on. More concretely, a common approach is to iteratively discard vertices, such that
we always discard the vertex whose removal introduces the smallest error (according to some
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2 Progressive Simplification of Polygonal Curves

Zooming out

Zooming in
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Figure 1 A progressive curve simplification for four different levels of detail. Note that when
zooming in, we add new vertices (in red) while retaining existing vertices (in black).

criterion). For example, the algorithm by Visvalingam and Whyatt [16] always removes the
vertex which together with its neighboring vertices forms a triangle with the smallest area.

Such approaches stand in stark contrast to (non-progressive) curve simplification al-
gorithms that aim to minimize the complexity of the simplification while guaranteeing a
(global) bound on the error introduced by the simplification. The most prominent algorithm
with a preset error bound was proposed by Douglas and Peucker [8]. However, while heurist-
ically aiming at a simplification with few vertices, this algorithm does not actually minimize
the number of vertices. A general technique for the problem of minimizing the number of
vertices was introduced by Imai and Iri [12]. Their approach uses shortcut graphs, which
we describe in more detail below. An efficient algorithm to compute shortcut graphs for
the Hausdorff distance was presented by Chan and Chin [6]. Inspired by the work of Vis-
valingam and Whyatt, Daneshpajouh et al. [7] defined an error measure for non-progressive
simplification by measuring the sum or the difference in area between a simplification and
the input curve. Other simplification algorithms minimize the number of vertices while
preserving distances [10] or areas [4]. In the line of these algorithms, the goal of our work is
to develop algorithms that solve progressive simplification as an optimization problem.

We assume that a polygonal curve C is given as sequence of its vertices, denoted by
C = 〈p1, . . . , pn〉. A (vertex-restricted) simplification S of a polygonal curve C is an ordered
subsequence of C (denoted by S v C) that includes the first and the last vertex of C. An
ε-simplification S is a simplification that ensures that each edge of S has a distance of at
most ε to its corresponding subcurve, where the distance measure can for instance be the
Hausdorff or the Fréchet distance [3]. We refer to ε as error tolerance or simply error for
S. For an ordered pair of vertices (pi, pj) of C, we denote the distance between the segment
(pi, pj) and the corresponding subcurve by ε(pi, pj). We denote by (pi, pj) ∈ S that (pi, pj)
is an edge of S.

We next define the progressive simplification problem. Given a polygonal curve C =
〈p1, . . . , pn〉 in R2 and a sequence E = 〈ε1, . . . , εm〉 with εi ∈ R>0 where 0 < ε1 < . . . < εm,
we want to compute a sequence of simplifications S1,S2, . . . ,Sm of C such that

1. Sm v Sm−1 v . . . v S1 v C (monotonicity),
2. Sk is an εk-simplification of C,
3.
∑m
k=1 |Sk| is minimal.

We refer to a sequence of simplifications fulfilling the first two conditions as progressive
simplification. A sequence fulfilling all conditions is called a minimal progressive simplification,
and the problem of computing such a sequence is called the progressive simplification problem.
We present an O(n3m)-time algorithm for the progressive simplification problem in the plane.
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SG(C, ε)C

Figure 2 Using shortcut graph G(C, ε) to obtain a simplification S for polygonal curve C.

The cornerstone of progressive simplification is that we require monotonicity. This
guarantees that, when “zooming out”, vertices are only removed and cannot (re)appear. As
error measure, we will mostly use the Hausdorff distance. This is not essential to the core
algorithm, and we will discuss how to use the Fréchet distance [3] or area-based measures [7]
without affecting the worst-case running time. Furthermore, our algorithm generalizes to
the continuous version of the problem, wherein Sε needs to be computed for all 0 ≤ ε < εM .
As in the discrete setting, we require Sε′ v Sε for ε′ > ε; the resulting algorithm minimizes∫ εM

0 |Sε| dε in O(n5) time. Note that εM is the error tolerance at which we can simplify the
curve by the single line segment (p1, pn); thus, we have εM = ε(p1, pn).

In our algorithms, we make use of the shortcut graph as introduced by Imai and Iri [12].
For a given curve C, a shortcut (pi, pj) is an ordered pair (i < j) of vertices. Given an error
ε > 0, a shortcut (pi, pj) is valid if ε(pi, pj) ≤ ε. The shortcut graph G(C, ε) [12] represents all
valid shortcuts (pi, pj) with 1 ≤ i < j ≤ n. A minimum-link path in this graph, corresponds
to a minimal simplification (in the case m = 1), see Figure 2 for an example.

A crucial bottleneck in our algorithms but also in existing algorithms for the (non-
progressive, i.e. m = 1) simplification problem is the construction and space usage of these
graphs. We therefore introduce new techniques for the computation and representation
of shortcut graphs. These techniques apply to both the progressive and non-progressive
simplification problem.

Firstly, we present an algorithm for constructing shortcut graphs for many levels of detail
efficiently. To date, it has been known only how to compute shortcut graphs under the
Hausdorff distance in subcubic time if the error ε is given up front. Our algorithm computes
the errors ε(pi, pj) of all shortcuts (pi, pj) by incrementally constructing an augmented convex
hull of contiguous subsequences of the curve.

Secondly, we introduce a compressed representation of the shortcut graph that employs
so-called shortcut intervals. We show that this representation has linear space complexity
in practice, and illustrate how we can use this to compute shortest paths in only O(n logn)
time in practice, instead of using breadth-first search in O(n2) time.

In our experiments, we compare our minimal progressive simplification algorithm with
several natural heuristics. Furthermore, we evaluate our constructing of the shortcut graph
for many levels and our compressed representation of shortcut graphs.

2 Optimal Progressive Simplification

Many applications, such as cartography or GIS, require computing or visualizing curve
features on many spatial scales. We call a series of simplifications that is consistent for
varying spatial scales progressive simplification. In this section, we first show how to solve
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the progressive simplification problem in O(n3m) time for m scales. We then generalize our
algorithm to solve the continuous progressive simplification problem in O(n5) time.

2.1 Progressive simplification for m scales
By the monotonicity property of the progressive simplification problem (see Condition 1 in the
definition in Section 1), we require that all vertices within a simplification Sk of the sequence
must also occur within all subsequent simplifications Sl with k < l. Adding shortcuts to a
specific simplification thus influences the structure of the other simplifications. Inspired by
the shortcut graph representation by Imai and Iri [12], wherein each valid shortcut has unit
costs, we decided to model each shortcut (pi, pj) in the shortcut graph G(C, εk) at scale εk
by a cost value cki,j ∈ N, describing the cost of including (pi, pj) in Sk. We use the Hausdorff
distance as an error measure to determine whether a shortcut is valid, but since the shortcut
graph is flexible to use any error measures, we can employ any other distance measure for
our algorithms. In particular for the Fréchet distance [3] and area-based distances [7], we
can use easily compute whether a shortcut is valid in O(n) time, and therefore use these
measures without changing the worst-case running time. We obtain a cost value cki,j for a
shortcut (pi, pj) ∈ G(C, εk) by minimizing the costs of all possible shortcuts in 〈pi, . . . , pj〉 at
lower scales recursively. The dynamic program is defined as follows:

cki,j =


1 if k = 1
1 + min

π∈
∏k−1

i,j

∑
(px,py)∈π

ck−1
x,y if 1 < k ≤ m

where
∏k
i,j denotes the set of all paths in G(C, εk) from pi to pj .

We construct the sequence of simplifications from Sm down to S1. First, we compute Sm
by returning the shortest path from p1 to pn in G(C, εm) using the computed cost values at
scale m. Next, we compute a shortest path P from pi to pj in G(C, εm−1) for all shortcuts
(pi, pj) ∈ Sm. Simplification Sm−1 is then constructed by linking these paths P with each
other. We build all other simplifications in this manner until S1 is constructed.

The algorithm starts with constructing the shortcut graphs G(C, εm), . . . , G(C, ε1). For
most distance measures, the distance of shortcut (pi, pj) to the subcurve 〈pi, . . . , pj〉 can be
determined in O(j − i) time. For such measures, constructing these graphs naively takes
O(n3m) time because we need to determine for each shortcut (O(n2) shortcuts) which of the
O(n) vertices of the curve are approximated by the shortcut at each spatial scale (m scales).
By employing the algorithm by Chan and Chin [6], we can compute it in O(n2m) time for
the Hausdorff distance.

We compute all cost values from scale k = m up to 1 by assigning a weight cki,j to each
shortcut (pi, pj) ∈ G(C, εk). For each shortcut (pi, pj) ∈ G(C, εk), we compute cki,j by finding
a shortest path π in G(C, εk−1) from pi to pj , minimizing

∑
(px,py)∈π c

k−1
x,y . This shortest path

computation resembles the one from Imai and Iri [12] for the original min−# simplification
problem.

We can employ any shortest path algorithm for this, such as Dijkstra’s algorithm. On
each scale k, we need to run Dijkstra’s algorithm on O(n) source nodes of G(C, εk). This
yields a worst case running time of O(n3m), because the shortcut graph can have O(n2)
edges in the worst case and we need to run Dijkstra’s algorithm on each source node for each
spatial scale.

We increment cki,j = ck−1
i,j + 1 for any shortcut (pi, pj) ∈ G(C, εk−1). By doing so, we

avoid recomputations of shortest paths and reuse cost values whenever necessary.
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If (pi, pj) is a valid shortcut in G(C, εk−1) for any 1 < k ≤ m, then it follows that
cki,j = ck−1

i,j + 1. We prove the following lemma:

I Lemma 1. For any 1 < k ≤ m and (pi, pj) ∈ G(C, εk−1), it follows that cki,j = ck−1
i,j + 1.

Proof of Lemma 1. Assume (pi, pj) ∈ G(C, εk−1). Because εk > εk−1, we have G(C, εk−1) ⊆
G(C, εk), which implies that (pi, pj) ∈ G(C, εk). See Figure 3 for an example showing the
graphs G(C, εk) (and their use in the algorithm). Now let us make the following case distinc-
tion:

Case k = 2: Because (pi, pj) ∈ G(C, ε1), we can derive c2
i,j = c1

i,j + 1 as follows:

c2
i,j = 1 + min

π∈
∏1

i,j

∑
(px,py)∈π

c1
x,y = 1 + min

π∈
∏1

i,j

∑
(px,py)∈π

1 = 1 + 1 = c1
i,j + 1

Case k > 2: We prove cki,j = ck−1
i,j + 1 by showing that both the upper and lower bound of

cki,j are equal to ck−1
i,j + 1. Because (pi, pj) ∈ G(C, εk−1), we can derive the upper bound as

follows:

cki,j = min
π∈
∏k−1

i,j

∑
(px,py)∈π

ck−1
x,y + 1 ≤

∑
(px,py)∈〈pi,pj〉

ck−1
x,y + 1 = ck−1

i,j + 1

Now let us prove the lower bound.

cki,j = 1 + min
π∈
∏k−1

i,j

∑
(px,py)∈π

ck−1
x,y = 1 + min

π∈
∏k−1

i,j

∑
(px,py)∈π

(1 + min
π′∈
∏k−2

x,y

∑
(pa,pb)∈π′

ck−2
a,b )

≥ 1 + 1 + min
π∈
∏k−1

i,j

∑
(px,py)∈π

min
π′∈
∏k−2

x,y

∑
(pa,pb)∈π′

ck−2
a,b ≥ 1 + 1 + min

π∈
∏k−2

i,j

∑
(px,py)∈π

ck−2
x,y

= ck−1
i,j + 1

The last inequality holds, since a path from pi to pj constructed by concatenating several
shortest subpaths is always at least as long as a single shortest path from pi to pj . J
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Figure 3 Using shortcut graphs weighted by cost to find a minimal progressive simplification.
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We prove that our simplification algorithm returns a valid and minimal solution for
the progressive simplification problem. Let 〈S1, . . . ,Sm〉 be a sequence of simplifications
computed by our algorithm. By constructing the simplifications from scale m down to 1,
it follows that for any shortcut (pi, pj) ∈ Sk with 1 < k ≤ m, there exists a subsequence
〈pi, . . . , pj〉 v Sk−1, and thus Sk v Sk−1. Furthermore, each simplification Sk has a maximum
Hausdorff distance εk to C since it contains only edges from G(C, εk).

It remains to show that we minimize
∑m
i=1 |Si|. We therefore define a set of shortcuts

Si,jk for any 1 ≤ i < j ≤ n and 1 ≤ k ≤ m as Si,jk = { (px, py) ∈ Sk | x ≤ i < j ≤ y }.
Thus, Si,jk includes all line segments of Sk that span the subcurve 〈pi, . . . , pj〉 with an

error of at most εk to C. |Si,jk | then is the number of shortcuts in simplification Sk covering
(pi, pj).

I Lemma 2. If the line segment (pi, pj) is part of simplification Sk, then the associated cost
value cki,j =

∑k
`=1 |S

i,j
` | for any 1 ≤ k ≤ m and 1 ≤ i < j ≤ n.

Proof. We show cki,j =
∑k
`=1 |S

i,j
` | by induction on k using the following induction hypothesis:

For any (px, py) ∈ Sk, it holds that ckx,y =
∑k
`=1 |S

x,y
` | (IH).

Base k = 1: Take any shortcut (pi, pj) ∈ S1. It follows that Si,j1 = {(pi, pj)}, and therefore
|Si,j1 | = 1. We deduce that c1

i,j = 1 =
∑k
`=1 1 =

∑k
`=1 |S

i,j
1 |.

Step k > 1: Take any line segment (pi, pj) ∈ Sk+1. Thus, we observe (pi, pj) ∈ G(C, εk+1),
Si,jk+1 = {(pi, pj)}, and |Si,jk+1| = 1.

Consider any 1 ≤ ` ≤ k and a path π ∈
∏k(pi, pj) such that

∑
(px,py)∈π |S

x,y
` | is minimal.

We now derive that π = Si,j` such that Sx,y` is minimal for all (px, py) ∈ π. Note that
π = Si,j` ⊆ G(C, ε`) ⊆ G(C, εk) since εk ≥ ε`. We observe that π is both in

∏`(pi, pj) and∏k(pi, pj). It thus follows that:

min
π∈
∏k

i,j

∑
(px,py)∈π

|Sx,y` | = min
π∈
∏`

i,j

∑
(px,py)∈π

|Sx,y` | (1)

From π = Si,j` it follows that Sx,y` ∩S
y,z
` = ∅ for any (px, py) and (py, pz) in π. Combining

Sx,y` for all (px, py) ∈ π yields a non-overlapping sequence of shortcuts from pi to pj . This
gives us:

|Si,j` | = min
π∈
∏`

i,j

∑
(px,py)∈π

|Sx,y` | (2)

We now derive the following:

ck+1
i,j

(IH)= 1 + min
π∈
∏k

i,j

∑
(px,py)∈π

k∑
`=1
|Sx,y` |

(1)= 1 +
k∑
`=1

min
π∈
∏`

i,j

∑
(px,py)∈π

|Sx,y` |
(2)= 1 +

k∑
`=1
|Si,j` |

|Si,j
k+1|={(pi,pj)}

=
k+1∑
`=1
|Si,j` |

J

By observing the combined size of the computed simplification is minimal, we obtain the
following theorem.

I Theorem 3. Given a polygonal curve with n vertices in the plane, and 0 ≤ ε1 < . . . < εm, a
minimal progressive simplification can be computed in O(n3m) time under distance measures
for which the validity of a shortcut can be computed in O(n) time. This includes the Fréchet,
the Hausdorff and area-based measures.



K.Buchin, M.Konzack and W.Reddingius 7

Proof of Theorem 3. It remains to prove that the combined size of the simplifications
computed by our algorithm is minimal. Let 〈S ′1, . . . ,S ′m〉 be a sequence of simplifications of
a minimal progressive simplification, and let 〈S1, . . . ,Sm〉 be the sequence computed by our
algorithm.

Let us derive the following:

min
π∈
∏m

1,n

∑
(px,py)∈π

cmx,y
(2)= min

π∈
∏m

1,n

∑
(px,py)∈π

m∑
k=1
|Sx,yk |

(1)=
m∑
k=1

min
π∈
∏`

1,n

∑
(px,py)∈π

|Sx,yk |
(2)=

m∑
k=1
|Sk|

Hence, the algorithm produces a simplification that minimizes the cumulative cost of
shortcuts in Sm. Because Si+1 v Si; the algorithm produces a set of simplifications in which
each simplification consists of edges from the corresponding shortcut graph such that the
cumulative number of vertices is minimized.

We further know that any minimal simplification S ′k is a path in G(C, εk) since it strictly
connects shortcuts with an error of at most εk.

We conclude that
∑m
k=1 |Sk| ≤

∑m
k=1 |S ′k|. J

2.2 Continuous Simplification
Before solving the continuous case, we consider weighted progressive simplification, wherein
the objective is to minimize

∑m
k=1 wk|Sk| (with wk ≥ 0), thus the weighted cumulative size

of the simplifications. For the weighted progressive simplification, we use the following
cost function for each shortcut (pi, pj) ∈ G(C, εk): if k = 1, cki,j = w1 else cki,j = wk +
min

π∈
∏k−1

i,j

∑
(px,py)∈π c

k−1
x,y . The proofs for the regular/unweighted case trivially extended

to apply to this updated cost function. The main reason to consider the weighted case is
that it helps us solving the continuous progressive simplification problem.

I Theorem 4. Given a polygonal curve with n vertices in the plane, a minimal continuous
progressive simplification can be computed in O(n5) time under distance measures for which
the validity of a shortcut can be computed in O(n) time. This includes the Fréchet, the
Hausdorff and area-based measures.

Proof. Consider the error tolerances ε(pi, pj) of all possible line segments (pi, pj) with
i < j with respect to the Hausdorff distance (or another distance measure). Then, let
E := 〈ε1, . . . , ε(n

2)〉 be the sorted sequence of these error tolerances based on their value.
Let M be the index of the corresponding εM in this sorted sequence E for the line segment
(p1, pn); thus εM = ε(p1, pn). Note that it is possible that M <

(
n
2
)
, but there is no reason

to use any ε > εM , since at this point we already have simplified the curve to a single line
segment, (p1, pn).

In a minimal-size progressive simplification it holds that Sε = Sεi
for all ε ∈ [εi, εi+1).

This can be shown by contradiction: if Sε would be smaller, we could decrease the overall
size by setting all Sε′ with ε′ ∈ [εi, ε] to Sε. Therefore, in a minimal continuous progressive
simplification we have

∫ εM

0 |Sε| dε =
∑M−1
k=1 (εk+1−εk)|Sεk

|. Thus, we can solve the continuous
progressive simplification problem by reducing it to the weighted progressive simplification
problem with O(n2) values εk and weights wk = εk+1 − εk. J

3 Constructing the Shortcut Graph for Arbitrary Scale

As described in Section 2, the first step in producing a minimal progressive simplification is
to construct shortcut graphs for m different error tolerances. One approach is to construct
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each graph G(C, εk) independently; deciding for every line segment whether or not it is a
shortcut for a given error εk. However, this is likely to cause overhead when simplifying for
many different levels of detail (e.g. Section 2.2). Thus, instead of independently deciding
for every error tolerance whether each shortcut is valid or not, we can determine the error
ε(pi, pj) of each shortcut (pi, pj), i.e., the “distance” from (pi, pj) to its subcurve 〈pi, . . . , pj〉.
Afterwards, a shortcut graph can be constructed for any error by simply filtering on these
errors. Assuming we use a distance measure which computes the error tolerance of a
shortcut (pi, pj) in O(j − i) time, we spend only O(n3) time using this approach. This is an
improvement over independently constructing the shortcut graphs in O(n3m) time.

In this section, we show how we can further improve this bound to O(n2 logn) time
for the Hausdorff distance. The error ε(pi, pj) of shortcut (pi, pj) is the distance from the
furthest point Xi,j in 〈pi, . . . , pj〉 to line segment (pi, pj). Therefore, Xi,j must be a point
on the convex hull enclosing all points in 〈pi, . . . , pj〉.

To illustrate our approach, let us consider the simpler problem of searching for the vertex
X ′i,j furthest from the line through pi and pj (instead of furthest from the line segment) for
each pair of vertices pi, pj . For every pi we could incrementally construct a convex hull CHi

of the vertices pi, . . . , pj , for j = i+ 1, . . . , n. We can insert the next pj in O(logn) time by
storing CHi suitably, and then find X ′i,j by an extreme point query also in O(logn) time. In
this way, we could compute all X ′i,j in O(n2 logn) time.

However, we want to compute the furthest point Xi,j not X ′i,j . By computing the furthest
point from the ray from pi through pj and from the ray from pj through pi, we ensure that
one of the points is Xi,j . To compute the furthest points from these rays, we can use the
same approach as for X ′i,j but need to suitably augment our convex hull data structure. In
summary, we obtain the following theorem.

I Theorem 5. Given a polygonal curve 〈p1, . . . , pn〉 in the plane, we can compute for
all 1 ≤ i < j ≤ n the Hausdorff distance between line segment (pi, pj) and the subcurve
〈pi, . . . , pj〉 in O(n2 logn) time.

We discuss the construction for this theorem now. To compute ε(pi, pj) for all pairs pi, pj ,
we construct a convex hull CHi for all vertices pi ∈ C, represented by an upper hull CHt

i and
a lower hull CHb

i . Both CHt
i and CHb

i are represented using a balanced binary search tree
ordered by the x-coordinates of its points. We construct CHt

i and CHb
i by incrementally

inserting all points from pi up to pn, such that, after inserting some point pj , CHi will
represent a convex hull enclosing 〈pi, . . . , pj〉.

To simplify the description of the algorithm, we assume without of generality that (pi, pj)
is a horizontal line segment with pi to the left. We subdivide the area around (pi, pj) into
four regions: T (op), B(ottom), L(eft), and R(ight).

After inserting a point pj into the convex hull CHi, we first extract candidates for Xi,j

by finding extreme points on the convex hull in the directions orthogonal to the line segment
(pi, pj) in O(logn) time per query. By finding extreme point in the directions orthogonal to
(pi, pj), we identify the best candidates for Xi,j in regions T and B, but we may miss points
in regions L and R. An example of such a scenario is given in Figure 4. Therefore, we also
need to determine the furthest point X l

i,j from pi in region L, and the furthest point Xr
i,j

from pj in region R.
We obtain X l

i,j by annotating the convex hull and extracting candidates Xtl
i,j and Xbl

i,j

using a range query on CHt
i and CHb

i respectively. For example, we determine Xtl
i,j by

maintaining an annotation of the root node pr of each subtree Tr ∈ CHt
i with the furthest

point in Tr to pi. The root node of CHt
i is therefore annotated with the point in CHt

i

furthest from pi. An example of such a tree annotation is shown in Figure 5.
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i,j

Xb
i,j
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R
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BXl
i,j
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i,jR

Figure 4 Division of the convex hull into regions L (red), R (yellow) , T (green) and B (blue).
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q1 q5

q1 q12

q9 q11

q13

q11 q13

q9 q11

q13

q1

Figure 5 Annotating the binary search tree of the upper convex hull CHt
i = 〈q1, . . . , q13〉 to find

Xtl
i,j . Case 1 applies at node q6, meaning we can use its annotation (q5) as a candidate for Xtl

i,j .

Such an annotation allows us to search for subtrees of CHt
i which lie completely inside L,

and use the annotation of these subtrees as candidates for Xtl
i,j . We traverse the search tree

and check the following for every node qc rooted at subtree Tc = 〈qmin, . . . , qmax〉:

1. If both qmin and qmax are inside L, we know by the convexity of the hull that the entire
subtree lies inside L. We thus consider the annotation of qc as a candidate for Xij

tl .
2. If either qmin or qmax are inside L, we continue our search by traversing to both children

of qc.
3. Otherwise, stop the search.

However, there are two degenerate cases to consider whenever pi lies horizontally between
qmin and qmax. Firstly, pj might lie above pi and both qmin and qmax lie inside L, as
illustrated in Figure 6a. In this scenario, Case 1 applies, yet not all points in Tc lie inside L,
meaning we cannot reliably use its annotation. Secondly, we may have the opposite, where
pj lies below pi, and neither qmin nor qmax lies inside L. An example of this is shown in
Figure 6b. Case 3 applies, yet there are points from Tc that lie inside L, meaning we should
further explore descendants of qc. Because in either scenario we have not yet reached a
subtree which lies completely inside L, we handle these degenerate cases by traversing to
both children of qc, like we do in Case 2.

For region R, we cannot reuse this approach to determine the furthest point Xr
i,j , since

pi is the first point added to the convex hull, and pj the last. We solve this by running this
annotation algorithm on the reversed sequence of C as well, constructing each convex hull
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pi

pj

L

qmin

qc

qmax

(a) pj above pi and qmin, qmax both in L

pi

pj

L

qmin

qc

qmax

(b) pj below pi and qmin, qmax not in L

Figure 6 Degenerate cases where pi lies horizontally between qmin and qmax.

CHj by incrementally inserting all points from pj down to p1. For every shortcut (pi, pj),
we determine ε(pi, pj) by computing Xt

i,j , X
b
i,j and X l

i,j during the forward traversal of C,
and Xr

i,j during its reverse traversal.
Overall, we perform O(n2) insertions and queries, resulting in a total running time of

O(n2 logn).

4 Compressing the Shortcut Graph

For many types of spatial data, such as movement trajectories or line features on a map,
consecutive points pi and pj are expected to be spatially close. We can therefore presume
that, if (px, pi) is a valid shortcut for some point px, then (px, pj) is most likely a shortcut
as well. We can exploit this phenomenon to represent shortcut graphs using so-called
shortcut intervals, which are contiguous subsequences of C with which a particular point
forms shortcuts. Alewijnse et al. [2] utilised this fact in a similar approach to speed up
trajectory segmentation.

Formally, any shortcut interval for a point pi and error tolerance ε is a maximal interval
[x, y] where all shortcuts (pi, pj) for x ≤ j ≤ y are valid for ε. Instead of representing a
shortcut graph with a graph G(C, ε) that explicitly stores all edges, we represent the shortcuts
using a shortcut interval set I(C, ε) = 〈I1(ε), . . . , In(ε)〉, where Ii(ε) is a sequence of all
shortcut intervals for pi and ε.

To illustrate why this representation is useful, consider Figure 7. Here, we see a shortcut
interval set given by a movement trajectory for several different error tolerance values. The
shortcut interval set is represented as a matrix, where the shading of a cell (i, j) with
1 ≤ i, j ≤ n indicates whether (pi, pj) is a valid shortcut. Observe that regardless of the
error tolerance, every column or row within the matrix only has a few shaded regions. We
therefore can expect any Ii(ε) to be of constant size in practice, meaning I(C, ε) has linear
space complexity in experimental settings. Shortcut interval sets are thus typically an order
of magnitude smaller as opposed to storing the shortcut graph explicitly.

For the Hausdorff distance, we can easily adapt the algorithm by Chan and Chin to
efficiently construct shortcut intervals (see Figure 8). Chan and Chin [6] proposed an
algorithm for efficiently computing shortcut graphs under the Hausdorff distance in O(n2)
time using a fixed error tolerance. This algorithm first computes two sets of shortcuts, and
then intersects these sets to obtain the shortcut graph. Because both sets have a size of
O(n2), this intersection runs in O(n2) time.

We can speed up the intersection of these sets by using shortcut intervals instead of
representing the shortcuts explicitly. More specifically, we have two shortcut interval sets
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(a) I(C, ε1) (b) I(C, ε2) (c) I(C, ε3) (d) I(C, ε4) (e) I(C, ε5)

Figure 7 Shortcut intervals sets of a movement trajectory for five different error tolerance values.
Each black cell represents a shortcut.

I ′(C, ε) and I ′′(C, ε), and we wish to obtain an interval set I(C, ε) such that each Ii(ε) contains
the overlap of the intervals in I ′i(ε) with the intervals of I ′′i (ε). We can efficiently do this by
simultaneously stepping through the sequence of shortcut intervals of I ′i(ε) and I ′′i (ε), while
computing every overlap encountered in O(1) time. Because each set typically contains O(n)
shortcut intervals, this then takes O(n) time. An example is shown in Figure 8.

I ′i(ε)

I ′′i (ε)

Ii(ε)

Figure 8 Overlapping two shortcut interval sets for some point pi.

The last step in computing a simplification for a given error is to compute a shortest
path from p1 to pn in the shortcut graph. This is typically done using breadth-first search in
O(n2) time in practice. We show now how we can improve this by using the typically linear
complexity of shortcut interval sets to find shortest paths in (typically) O(n logn) time in
practice.

Consider we wish to find a shortest path in shortcut graph G(C, ε) from ps to pt. We
construct a balanced binary search tree T containing all points 〈ps, . . . , pt〉 ordered by their
indices. For any point pr ∈ T rooted at subtree Tr, our objective is to annotate pr with the
next point in a shortest path from pr to pt (and the length of this path), and the first point
in a shortest path from any point in Tr to pt (and the length of this path). Hence, there
exists an annotation for every node and subtree in the binary search tree T .

We achieve a complete annotation of T by inserting all points from pt down to ps. Before
inserting a point pi, we perform a range query on T for every shortcut interval in Ii(ε).
A range query for a shortcut interval [x, y] ∈ Ii(ε) finds all subtrees 〈pa, . . . , pb〉 where
x ≤ a ≤ b ≤ y. For each point pj in each of these subtrees, there exists a shortcut (pi, pj);
we therefore can use the subtree’s annotation to obtain a shortest path candidate from pi
to pt. After computing all path candidates, we insert pi and annotate it with the shortest
path found, and maintain a valid tree annotation by updating the subtree annotation of all
ancestors of pi. An example is provided in Figure 9. Finally, after inserting all points, we
construct the shortest path from ps to pt using the node annotation of ps.

As aforementioned mentioned, we assume that |Ii(ε)| has constant size in practice for
any point pi ∈ C. However, it may occur that certain shortcut intervals are so small that
performing the corresponding range query is more time-consuming than simply checking
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I1(ε)

p2

p15p1

p2 p3

p4

p5

p6

p7
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p9p10

p11
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p13

p14

p15

p10/2

p13

p11

p8 p10 p12 p14

p9

p3

p4 p6

p5

p7p8/3

p7/4p8/3

p12/5 p14/2

p13/3p15/1

p14/2

p10/2

p15/1

p2/4 p8/3 p11/3

G(C, ε)

-/0

p11/3

p6/4

T

Figure 9 Finding the shortest path from p1 to p15 by means of range queries. We denote each
node annotation as px/`, where px is the next step in a shortest path from p1 to p15 with a length
of `. Below every interval in I1(ε) we show the candidate node annotation of p1 given by the range
query on that interval. In this case, p1 is given a node annotation of either p8 or p11.

the node annotation of all points in that interval. There are O(n2) shortcut intervals in
the worst case, yielding the worst-case running time of O(n2 logn), which is slower than
breadth-first search. Therefore, we employ an optimisation for shortcut intervals [x, y] where
y − x < c · logn for some positive constant c where we compute the shortest path by brute
force in O(y− x) time. By doing so, we reduce the worst-case running time of this algorithm
to O(n2).

5 Experimental Evaluation

Varying spatial scales is central to many applications in the analysis of movement data. One
motivation for studying progressive simplification is to interactively explore trajectories at
multiple levels of detail. For example, popular map services23 use many but constant number
of spatial scales.

Firstly, we are interested how multiple scales influence the computation of simplification
algorithms. We want to evaluate our progressive simplification algorithm and compare it
to existing simplification algorithms. In our experiments, we exploit how the input length,
the number of scales, the number of shortcuts, and the error tolerance values impact the
running time and the simplification size (cumulative as well as at each scale). Furthermore,
we investigate how the performance differs for computing simplifications top down (zooming
in) versus bottom up (zooming out). Secondly, we evaluate the efficiency and the trade-offs
between employing our convex hull construction with shortcut intervals and the explicit
construction of shortcut graphs.

We use a movement trajectory of a migrating griffon vulture [14] in all our experiments
that is highly suitable for multi-scale simplification, due to its high granularity and large
distance span. We conducted the experiments on a 64-bit Intel Core i7-2630QM machine
with 8 gigabytes of DDR3 SDRAM. All code was written in C# 6.0 and is available at
https://github.com/WimReddingius/MultiScaleTrajectories.

2 https://developers.google.com/maps/documentation/maps-static/intro#Zoomlevels
3 https://wiki.openstreetmap.org/wiki/Zoom_levels

https://github.com/WimReddingius/MultiScaleTrajectories
https://developers.google.com/maps/documentation/maps-static/intro#Zoomlevels
https://wiki.openstreetmap.org/wiki/Zoom_levels
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5.1 Progressive Simplification

We start our analysis by comparing the various simplification algorithms in a progressive
simplification setting. We implemented these algorithms (compare Section 1): the optimal
min-# algorithm by Imai and Iri [12] (II), the Douglas-Peucker simplification [8] (DP), and
the heuristic by Cao et al. [5].

We use a sample of 5000 points and 10 scales, for which the associated error tolerance
values are linearly sampled from the 10% smallest shortcut errors. This set-up allows us
to find simplifications that resemble the original curve well and emulates a similar number
of scales as in state-of-the-art map services. All shortcut graphs are constructed using
Chan and Chin’s algorithm [6] and represented as shortcut interval sets.

We compare the optimal algorithms with greedy heuristics for progressive simplification
running in O(n2m) time. Our optimal algorithm constructs progressive simplifications top
to down (TD), but its performance is limited by the time spent determining the weights
of all edges in the shortcut graphs. This can be speed up by greedily simplifying every
simplification Sk using the shortcut graph G(C, εk) and propagating this choice to lower
scales, imposing Sk v Sk−1. Alternatively, we can construct a progressive simplification
from the bottom up (BU) by ensuring that all vertices in Sk are also present in Sk−1.
We achieve this by skipping all shortcuts (pi, pj) during construction of G(C, εk) where
pi 6∈ Sk−1 or pj 6∈ Sk−1. Cao et al. [5] proposed an alternative bottom-up heuristic which
uses any algorithm to produce Sk, and use this simplification as input for the next round
which constructs Sk+1. By doing so, Sk+1 v Sk is imposed without doing any additional
work. Note how this heuristic is different from the aforementioned bottom-up strategy, as it
computes simplification Sk using the graph G(Sk−1, εk) instead of G(C, εk). Although faster,
this heuristic runs the risk of progressively increasing the error of these simplifications with
respect to the input curve. Specifically, the error of Sk may be in the worst case

∑k
`=1 ε`

instead of just εk.
Our implementation of the greedy algorithms use range queries on these shortcut interval

sets to find shortest paths (implemented using left-leaning red black trees [15]), whereas the
minimal simplification algorithm (Section 2) uses Dijkstra’s algorithm implemented using
pairing heaps for priority queues [9].

In Figure 10 and Figure 11, we can see the running time and the cumulative simplification
size for each simplification algorithm. As expected, the minimal progressive simplification
algorithm (II Prog.) is close in size to a minimal non-progressive simplification (II Non
Prog.), but is at least an order of magnitude slower than the other algorithms. In Figure 10,
some lines overlay in the plot due to similar running times.
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Figure 10 Running time in seconds with respect to the length of the input curve.
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Figure 11 Cumulative simplification size for 5000 points.

Note that greedily constructing progressive simplifications from top to down (II TD)
yields a simplification size that is significantly larger than any other algorithm. This is due to
inaccuracies of greedy choices at higher (coarser) scales that propagate to the simplifications
on lower (finer) scales. A bottom-up construction (II BU) yields better results by starting
with the least aggressive greedy choice at the lowest scale. II BU is also better than II TD
in terms of running time, because the shortcut graphs for smaller error tolerance values are
faster to construct, while greedy choices at these lower scales allow for drastic pruning during
construction of the shortcut graphs at higher scales. Our implementation of the bottom-up
approach by Cao (II BU Cao) results in marginally smaller simplifications than II BU, and
ran 2-3× faster than II BU (see Figure 12 for a plot), at the cost of a larger simplification
error at higher scales.
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Figure 12 Running time of II BU and II BU Cao with respect to the length of the input curve.

We now evaluate how these approaches employing shortcut graphs perform against
the efficient heuristic-based algorithm by Douglas and Peucker [8]. We substitute the
simplification routine in II TD by DP TD and we do the same by replacing II BU Cao
with DP BU. Because DP BU uses the progressive simplification heuristic by Cao et al. [5],
we would expect the simplification error to become more severe at higher scales, much
like II BU Cao. However, because Douglas-Peucker simplification recursively splits the
input curve at specific points consistently until the given error is reached, this does not
occur. It is also this splitting strategy that always yields DP TD and DP BU the same
exact progressive simplification. Because Douglas-Peucker simplification has near-linear
performance in practice, DP TD and DP BU are also exceptionally fast, with running times
around 40 times lower than II BU, wherein DP BU is significantly faster than DP TD
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(see Figure 13). However, because the simplification size is minimized heuristically, these
algorithms produce larger simplifications when compared to using shortcut graphs (with the
exception of II TD).
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Figure 13 Running time of DP TD and DP BU with respect to the length of the input curve.

In Figure 14, we gain insights in how the cumulative simplification size is distributed over
all scales for each algorithm. II TD is of particular interest, because we can see just how
fast the greedy choices at higher scales propagate to cause inaccuracies at lower scales. This
results in larger simplification sizes than any other algorithm. II TD reaches the smallest
simplification at scale 15, yet the previous greedy choices at scales 1 to 14 yield the largest
cumulative simplification size of all algorithms (compare Figure 11).
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Figure 14 Simplification size at every scale on a logarithmic scale.

5.2 Shortcut graphs

We now conduct experiments on techniques to construct shortcut graphs at multiple scales.
For this, we compare the running time of constructing the shortcut graphs independently
using Chan and Chin’s algorithm [6] with shortcut interval sets, and integrated construction
using convex hulls (Section 3). Left-leaning red-black trees [15] are used for representing
the convex hull. We use an input curve of length 3500, and the errors εk are chosen by
linearly sampling from all shortcut errors. A linear sampling allows us to investigate the
link between the errors and the number of shortcuts. While the independent construction
requires 7-8 seconds per shortcut graph, the integrated construction requires around 280
seconds for pre-computing all errors. In our experiments, this pre-computation starts paying
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off at around 65 scales, making it worthwhile for constructing minimal continuous progressive
simplifications, which may require a quadratic number of scales.

Next, we evaluate shortcut intervals, i.e., our approach to compress shortcut graphs
(cf. Section 4), which may speed up both progressive and non-progressive simplification
algorithms that use the shortcut graph. We analyze the space complexity, the construction
time and the running time of shortest path calculations. We perform experiments along two
dimensions: the length of the input curve and the simplification error. We investigate the
latter, since the level of compression that can be obtained by using shortcut intervals highly
depends on the density of the shortcut graph, which is directly related to the used error
tolerance. Shortcut graphs with higher density typically need less shortcut intervals. This
phenomenon can be observed in Figure 7.
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Figure 15 The space complexity of representing a shortcut graph with a density of 50% by either
explicitly storing all shortcuts, or using shortcut intervals, for various lengths of the input curve.

We start by analyzing how the input length influences the graph construction and the
shortest path computation. First, we compare the space complexity of shortcut interval
sets and explicit shortcut graphs. For this, we fix the density of the shortcut graph to
50%. Figure 15 reveals that the number of shortcuts grows quadratically in the length of
the input curve, whereas the number of shortcut intervals seems to grow linearly, though
non-monotonically. This non-monotonic growth reflects the fact that the progression of the
input curves changes as we extend the input sample.

The time required to construct a shortcut graph under the Hausdorff distance using the
algorithm by Chan and Chin turns out to be consistently more than twice as fast when using
shortcut intervals instead of an explicit construction. These experiments were performed
with a graph density of 25% (see plot in Figure 16).

For finding shortest paths in shortcut graphs, recall that by using range queries on shortcut
intervals, we spend time with respect to the number of shortcut intervals, whereas a breadth-
first search affects the number of shortcuts. Figure 17 shows that this relation also holds
true in experiments. We observe that by using range queries on shortcut intervals, we spend
near-linear time to find a shortest path in the shortcut graph. We foresee this improvement
to be an important stepping stone towards computing (non-progressive) simplifications in
near-linear time on large data.

Next, we evaluate how the magnitude of the error tolerance influences these results
(corresponding plots in Figures 18, 19, and 20). The number of shortcut intervals increases
and decreases in no discernible pattern, as the error tolerance grows. As discussed earlier,
this is related to the growth in coarseness among the shortcut intervals as the shortcut
graph density increases. We observe the monotonic growth in the number of shortcuts



K.Buchin, M.Konzack and W.Reddingius 17

0

5

10

15

20

25

30

35

5,0E+2 1,0E+3 1,5E+3 2,0E+3 2,5E+3 3,0E+3 3,5E+3 4,0E+3 4,5E+3 5,0E+3

T
im

e 
(s

ec
on

d
s)

Length of the input curve

Explicit Shortcut Graph Shortcut interval Set

Figure 16 Running time of constructing a shortcut interval set or an explicit shortcut graph
using Chan and Chin’s algorithm [6] for various lengths of the input curve.
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Figure 17 Running time for various lengths of the input curve of finding a shortest path from p1

to pn in a shortcut graph with 50% density using breadth-first search, or range queries on shortcut
interval sets.

(see Figure 18), whereas the number of shortcut intervals peeks around ε = 0.05, which
corresponds to a shortcut graph density of 80%.

The construction of shortcut graphs using Chan and Chin’s algorithm [6] is around three
times as faster when using shortcut interval sets (see Figure 19), regardless of the error
tolerance. We suspect that the implementation of shortcut interval sets is inherently more
efficient, since no index of shortcuts needs to be maintained to facilitate the intersection of
shortcut sets.

The running time of finding shortest path using breadth-first search and range queries on
shortcut interval sets is as expected directly related to the number of shortcuts and number
of shortcut intervals respectively. Here, shortcut intervals show their strength since the
number of shortcuts is typically an order of magnitude higher than the number of shortcut
intervals for most choices for the error tolerance (see Figure 20).

6 Conclusions

We present the first algorithm for computing a progressive simplification with minimal
complexity. For an input curve of n vertices, this algorithm runs in O(n3m) time for m
discrete scales, and O(n5) time for continuous scaling. Furthermore, we show how to compute
the errors ε(pi, pj) for all shortcuts in O(n2 logn) time under the Hausdorff distance.

The experimental evaluation on trajectory data shows that our progressive algorithm is
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Figure 18 The space complexity of representing a shortcut graph for an input curve with 10 000
points by either explicitly storing all shortcuts, or using shortcut intervals, for various error tolerances.
The peek at ε = 0.05 corresponds to a graph density of 80%
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Figure 19 Running time of constructing a shortcut interval set or an explicit shortcut graph
using Chan and Chin’s algorithm [6] on an input curve with 3000 points for varying error tolerances.
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Figure 20 Running time for various error tolerances of finding a shortest path in a shortcut
graph from p1 to pn using breadth-first search or range queries on shortcut interval sets, on an input
curve with 10 000 points.

effective, yet too slow for larger data, and provides similar cumulative simplification sizes as
an optimal non-progressive simplification algorithm. Greedy construction of the progressive
simplification from the bottom up is shown to provide a reasonable, faster alternative. Our
experimental results further indicate that integrated construction of multiple shortcut graphs
is effective when employed for many scales, and thus particularly useful for continuous
progressive simplification. Finally, shortcut intervals show a significant reduction in memory
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usage, and allows for finding shortest paths in near-linear time in practice. However,
applications use a constant number of scales up to now.

As future work, it would be of interest to improve the running time of the minimal
progressive simplification algorithm to facilitate its application on large data. With the
improvements made to finding shortest paths in the shortcut graph, we are one step closer to
an algorithm that computes minimal (non-progressive) simplifications that also in running
time is competitive with fast heuristics [8] and approximation algorithms [1]. To realize this,
we need new and efficient techniques for constructing shortcut interval sets, in particular for
large error tolerance. Finally, it would be interesting to see whether our global optimization
approach can be extended and is effective for progressively meshing surfaces [11].

Acknowledgements. We thank Michael Horton for our discussions on this topic.
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