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Black
then
white are
all I see
in my infancy
Red and yellow then came to be
reaching out to me
lets me see
there is
so
much
more and
beckons me
to look through to these
infinite possibilities
As below, so above and beyond, I imagine
drawn outside the lines of reason
Push the envelope
Watch it bend

Tool - Lateralus
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1
Introduction

Everythingmoves. Humansmove fromhome towork; animalsmove
to forage; packagesmove fromwarehouses to customers; hurricanes
emergeoverwater andcauseapathofdevastationwhen theyhit land;
this enumerationof examplesofmovement canbeextendedbymany
more. Consequently, movement analysis is central to understanding
the causal links in time and space between a moving entity and its
surroundingresources. Sincemovement is soubiquitous,movement
analysis hasmany applications.

One such application is movement ecology. Movement ecology is
an interdisciplinary scientific areawhich aims at understanding cues
and causes related to movement, specifically in regard to an organ-
ism and its environment. Understanding an organism’s movement
concerns internal factors – why, how, when and where an organism
moves to – and external factors that link an organism to its environ-
ment [Nathan et al., 2008].

Tracking individuals manually is tedious, and it does not allow con-
tinuous tracking or tracking over long distances. The availability of
new sensor technology has made it possible to track individuals re-
motely. Sensor technology, e.g., GPS, has drastically improved the
ability to capture movement [Kays et al., 2015; Nathan and Giuggioli,
2013]. These technological advances have led ecologists and biolo-
gists, among other researchers, e.g., urban planners or sports ana-
lysts, to collectmoreandmoremovementdata in recent years. These
collections offer a great opportunity to understandmovement.
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Consequently, domain experts, for instance ecologists, urban plan-
ners, sports analysts, or biologists, need methodologies that allow
them to generate knowledge frommovement data. Quantification of
spatio-temporal properties is pertinent if the analyst knowswhat she
is searching for. Qualitative methods, such as exploration, presenta-
tion, or detection, helpwhen the analyst knows little of her dataset or
does not yet have a specific objective in mind. Both quantitative and
qualitative methods are central to the movement analysis and com-
plement each other in it. All too often researchers consider only one
or the other; this is true for contributions fromalgorithms, which typ-
ically focusonquantitativemethods, aswell as for contributions from
visualization,which focusmainly onqualitativemethods. Combining
quantitative andqualitativemeans is therefore crucial to allowgener-
ating a wide range of knowledge frommovement data.

In this thesis, we explore how movement analysis can be advanced
by enhancing the interplay between algorithms and visualization. In
the remainder of this chapter, we will first review how the fields of
algorithmsandvisualizationcontributed to theanalysis ofmovement
before we give a brief summary of analysis tasks for movement data.
We thenprovideanoverviewof this thesis’s contributionsby relating
them to the discussed analysis tasks formovement data.

1.1 Computational Movement Analysis

To deal with the increasing amount of movement data, researchers
have strong need to analyzemovement data using automatedmeans.
Computational movement analysis (CMA) is concerned with devel-
oping new computational methods, that detect patterns and
structures inmovement data [Laube, 2014]. The goal of CMA is to de-
velop insight into thebehaviorofmovingphenomena fromrawmove-
ment data. Laube [2015] regards closing the semantic gap between
low-level tracking data and high-level concepts that an analyst wants
to investigate as today’s main challenge in CMA.
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The way in which movement data is being collected determines and
influences substantially its computational analysis. There are differ-
ent paradigms and manners to collect data. This thesis focuses on a
specific type of tracking data, whichwewill refer to as a trajectory. A
trajectory is a sequence of locations over time. Each location lies in
the plane (or can be projected onto the plane fromgeographic coordi-
nates) and has a corresponding time stamp indicating when the loca-
tionwas captured. Themovement between any two points in a trajec-
tory is unknown, so, in this thesis, we will use only the discrete loca-
tions and their time stamps as a representation of trajectories.

CMA is an interdisciplinary research field which involves various
methodological research areas to analyze movement: geographic in-
formation sciences, computer science, and statistics [Laube, 2014].
Even within computer science for instance, different fields of exper-
tise are needed in CMA to understandmovement: data mining, visu-
alization,machine learning, computational geometry, databasemod-
eling among others. Overlaps and synergies among those fields in
CMAhelp to elevate tooling and knowledge in CMA.

This dissertation explores the synergies between algorithms and vi-
sualization. Given a dataset, algorithms are needed to process the
databefore visualizing them. Also, visualizations are central tounder-
standhowanalgorithmworksonadataset. Thus,weare interested in
this thesis to investigate how techniques fromboth fields can beused
in concert to strengthen the analysis of trajectory data.

1.2 Algorithms

An algorithm in computer science is a sequence of actions that trans-
forms an input into an output with desired properties [Cormen et al.,
2009]. Ideally, an algorithm has provable guarantees on its output
and on its performance in terms of running time and storage require-
ments.

Designing, developing, and analyzing time-efficient and
space-efficient algorithms on geometric data is the focus of compu-



1
Algorithms 4

tational geometry [de Berg et al., 2008]. Application domains that in-
volve spatial information, e.g., geographic information systems,
robotics, cartography, and computer vision, have always played an
important role incomputationalgeometry. Naturally,movementdata
isan important topic incomputationalgeometrydue to its spatio-tem-
poral properties. Researchers from computational geometry have
thus developed new techniques and methods that have contributed
tomovement analysis across fields [Demšar et al., 2015].

Figure 1.1: Segmentation of the trajectories of two migratory geese from
Alewijnse et al. [2014]. The yellow segments are stopovers, and
the blue glyphs indicate the end of a stopover.

However, the resulting graphical representations in these computa-
tional approaches often do not go beyond plotting the trajectories as
line segments and points on a geographicmap (if the approaches are
implemented and evaluated experimentally at all). For example, Ale-
wijnse et al. [2014] propose a newmethod to segment a trajectory into
homogeneous pieces of similar movement characteristics, e.g., the
samespeed. Theyvisualized theirexperimental resultsbysimplyplot-
ting colored trajectories on top of an interactive geographicmap rep-
resenting the segmentation, as shown inFigure 1.1. Presuminga large
quantity of trajectories in a dataset, the visual abstractions fromplain
trajectories are required to declutter the results and to enhance ana-
lytical reasoning.
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1.3 Visualization

Visualization is a field in computer science which is concerned with
the graphical representation of knowledge in form of data, and pro-
vides means to manipulate, explore, and alter the representations to
help the user in creating new knowledge. Card et al. [1999] formally
define visualization as “the use of computer-aided, interactive, visual
representation of data to amplify cognition.” Munzner [2014] argues
that visualization helps users to carry out their tasksmore effectively.
Ultimately, the purpose of visualization systems is to gain insights
[van Wijk, 2006]. Hence, visualization enables movement analysts
to foster knowledge generation from collected data.

Sincemore andmore analysts are collecting an increasing amount of
data in various applications, it hasbecome important for visualization
systems to integrateusers’ knowledgeand inference capabilities into
analytical and visual data analysis processes to turn this information
overload into an opportunity [Keim et al., 2010b]. Visual analytics is
the research area that supports analytical reasoning with interactive
visual interfaces [Cook and Thomas, 2005]. Visual analytics couples
(see Figure 1.2) the analyst’s domain knowledge with methodologies
and visualizations [Keimet al., 2010a]. Sacha et al. [2016] argue that vi-
sual analytics helps users in building trust in their generated knowl-
edge base and in generating knowledge gained from large and often
complex data. Because of this cross-disciplinary nature of visual ana-
lytics, it has been applied to many domains: sports analytics [Losada
et al., 2016; Pileggi et al., 2012], biological networks [Dinkla et al., 2014],
fraud detection [Leite et al., 2018; Zhao et al., 2016], eye-tracking data
[Kurzhals andWeiskopf, 2013], andmanymore. Sun et al. [2013] pro-
vide a broad overview of the current state-of-the-art in visual analyt-
ics and its numerous applications.

However, current visualization systems and visual analytics systems
focus mainly on developing new visualizations based on specific do-
main knowledge. They often do not allow users the flexibility to re-
place or to experiment with various computationalmethods. Such vi-
sualizations are generally adapted to only one application or one spe-
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Data
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map
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with user
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AutomatedData Analysis
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Figure 1.2: The visual analytics process of this thesis, adapted from Keim
et al. [2010a]

cific dataset. For example, Andrienko et al. [2013] devised a compre-
hensive visual analytics tool for analyzing the collectivemovement of
agroupof individuals. In their system, theymakeuseof agroup’s cen-
ter and presume that a center can be computed at equal time stamps
for each trajectory without allowing variability in time and space. De-
pending on the application, for instance trajectories with high sam-
pling rate, anothermethod to compute a centermight beworthwhile.
Consequently, a strong need exists to make visual analytics systems
more flexible tosupportawiderangeofcomputationalmethods.

1.4 Trajectory Analysis

While movement data is used in many, varying applications, there
is a common set of frequently occurring fundamental analysis tasks.
Each analysis task has distinct computational requirements and vi-
sual design considerations. Munzner [2014] argues that task abstrac-
tion helps researchers to contemplate on the tasks’ similarities and
differences, to determine the tasks’ different goals, and to guide fur-
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therdataabstraction. Munzner’s argument thusmotivatedus to iden-
tify and structure analytical tasks for movement data based on the
number of trajectories in the data. This structure on the analytical
tasks is shown in Figure 1.3.

InChapter 2, we devise a typology formovement data by grouping an-
alytical tasks with similar characteristics and means. We can group
analytical tasks in multiple ways. Our typology provides a way to ab-
stract analytical tasks for trajectory data. In Section 2.2, we discuss al-
ternativewaysofabstractinganalytical tasks formovementdata.

Figure 1.3: Overview of analyses on trajectory data based on the number of
input curves. The colors indicate the task abstraction that we
use in Chapter 2: alignment methods are in purple, categoriza-
tions in blue, transforms in orange, and representations in red.

Given a single trajectory, we can segment the trajectory into pieces
that are homogeneous with respect to a parameter, such as speed or
direction ofmovement. Assigning labels to pieces of a trajectory that
are homogeneous based on a movement state is known as classifi-
cation. Such a movement state can be walking, flying, resting, etc.
When we compute recurring patterns, we identify subtrajectories



1
Overview 8

with repeating and similarmovements, such as commuting ormigra-
tion. Reconstructing a movement path is concerned with comput-
ing anapproximationof the actualmovement fromdiscrete locations
and possibly additional data. Reducing the number of points within a
trajectory while approximating the input trajectory up to a given er-
ror is known as simplification.

Themost prominent analysis on a pair of trajectories is to determine
their similarity. It deals with quantifying distances between two tra-
jectories. Determining interaction is concerned with detecting
whether trajectories are influencingeachother, for example, the indi-
viduals of the trajectories are avoiding or attracting each other.

Similarity can also be computed among more than two trajectories,
for instance, to identify parts of the trajectories with similar charac-
teristics frommultiple individuals. Likewise, we can identify interac-
tion events amongmore than two trajectories. Grouping trajectories
or pieces of trajectories based on similarity is called clustering. Clas-
sification assigns labels to parts of trajectories based on shared char-
acteristics. A representative is a single trajectory that approximates
the movement of all input trajectories. Identifying places that have
often been visited or where individuals stayed a certain duration are
known as interesting regions.

1.5 Overview

Hamming [1987] said: “The purpose of computation is insight, not
numbers.” Insight has diversemanifestations in human cognition, is
usually the first phase in problemsolving, and requires restructuring
an input quaintly [Mayer, 1995]. In this thesis, we contribute to com-
putational movement analysis by enhancing the interplay between
(theoretical) algorithms and (dataset-driven) visualizations using in-
tegrated computational and visual analytics systems, as shown in Fig-
ure 1.2. Our approaches foster new opportunities for analyzing trajec-
tory data and allowmovement analysts to enrich their knowledge ba-
sis and to gain new insights. This thesis makes several contributions
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to the analysis of movement, which we will now survey.

InChapter2weprovideabackgroundonmovementanalysisandpres-
ent a taxonomyof existing approaches from fields suchas algorithms,
GIS, and visualization. The goals of this survey are to create an aware-
ness of the variety of existingmethodologies and tohelp in advancing
interdisciplinary research onmovement data in general.

Chapter 3 concerns the computational complexity of analysis tasks
on trajectory data. Specifically, we discuss the running times of algo-
rithms formovementdataaswell as lowerbounds for certainanalysis
tasks. In addition to known bounds, we prove two new lower bounds.
First, we show for the simplification problem that an optimal simplifi-
cationcannotbecomputed insubquadratic timeassuming theStrong
Exponential Time Hypothesis (SETH) when the points of the input
curve lie in Ω(logn)-dimensional space, where n is the number of
points of the input curve. Secondly, we show that the discrete Fréchet
distancebetweenk curves, eachconsistingofnpoints, cannotbecom-
puted inO(nk−ϵ) time for any ϵ > 0 again assuming SETH. Our results
permitus tounderstandwhichproblemscanbesolvedefficientlyand
forwhich analysis tasksweneed approximation algorithmsorheuris-
tics. This chapter is partially based on joint work with Kevin Buchin,
MaikeBuchin,WolfgangMulzerandAndréSchulz [Buchinetal., 2016].

Shneiderman [1996] posed the visual information-seeking mantra:
“Overview first, zoom and filter, then details-on-demand”. In interac-
tivemaps, it is essential todrawa trajectoryatdifferent scaleswithout
unnecessary flickeringwhile zooming in or out. A progressive simpli-
fication addresses this problem by enforcing a consistent simplifica-
tion which only remove vertices when zooming out (and which only
adds vertices when zooming in). In Chapter 4we present the first effi-
cient algorithm for the progressive simplification problem that
provides a guaranteeon thecomplexity of the simplificationand runs
inO(n3m) time,wheren is thenumberofpoints in the inputcurveand
m is thenumberof scales. For continuous scaling, our algorithmcom-
putesaprogressive simplification inO(n5) time. Oursecondcontribu-
tion to the simplification problem concerns shortcut graphs. Short-
cut graphs are used within many simplification algorithms as data
structure. We show how to efficiently compute shortcut graphs at
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multiple scales. A shortcut graph encodes at which scale a certain
subtrajectory is sufficientlywell represented by only its start and end
point. We present a method to compute this information for all sub-
trajectories in O(n2 logn) time. This improves upon a running time
of O(n3), which would be needed if we compute this information for
each subtrajectory individually. Furthermore, we show how to com-
pactly represent shortcut graphs. The results of this chapter are
based on joint workwith Kevin Buchin andWimReddingius [Buchin
et al., 2018].

InChapter 5wepresent a visual analytics tool that computes andvisu-
alizes interaction events between two (or three) trajectories in which
delayed responses occurred. Our approach aligns the trajectories
basedon spatial properties and exploits the temporal differences that
occur in the alignment. By allowing the analyst to choose various
alignmentmethods, includingdynamic timewarpingandtheFréchet
distance, we enable users to also quantify the progression of similar-
ity over time. Our approach consists ofmultiple coordinated views in
which we use the temporal difference that occurs in the alignment
to visualize potential delayed responses. Furthermore, we provide a
novel approach to compute a global delay between two trajectories in
O(n logn) time by using Fast Fourier Transforms. Chapter 5 is based
on joint work with Kevin Buchin, Maike Buchin, Luca Giuggioli,
Joachim Gudmundsson, Jed Long, Thomas McKetterick, Trisalyn
Nelson, Tim Ophelders, Michel Westenberg and Georgina Wilcox
[Konzack et al., 2017, 2015].

Next, we present a visual analytics tool in Chapter 6 that exploresmi-
gratory trajectory data interactively. In our approach, we compute,
aggregate, and visualize stopovers, which are breaks frommigration,
on top of a geographic map in addition to a density map and a cal-
endar view. We applied our visual analytics tool to a dataset of 75
lesser black-backed gulls, and validated our approach through an ex-
pert user interview. Our evaluation suggests that our tool enables
ecologists to visually explore migratory patterns in trajectory data.
This chapter isbasedon jointworkwithKevinBuchin, PieterGijsbers,
Emiel van Loon, Ferry Timmers and Michel Westenberg [Konzack
et al., 2018].
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2.1 Introduction

Researchers frommany domains and applications collect trajectory
data to understand the cues and drivers behind an individual’smove-
ments. Methodologies for analyzing trajectory data benefit from the
numerous concepts and theories frommultiple disciplines. Thus, it
is important to get an overviewof the existing approaches. Therefore,
we will survey methodologies from various disciplines in this chap-
ter. We abstract low-level analytical tasks and survey their contribu-
tions, challengesandopportunities, andhigh-levelgoalsasexpressed
asmeans and characteristics.

Such an overview helps in designing and developing newmethods to
analyze trajectory data as well as in identifying similarities and dif-
ferences between the analytical tasks. By connecting the high-level
goals that analysts often have in mind with the low-level analytical
tasks for trajectorydata,weaimtoprovideacomprehensiveandholis-
tic survey on the analysis of movement data.

The contributions in this chapter are:

• a surveyofmethodsused toanalyzeandvisualize trajectorydata,

• a typology in whichwe arrange all approaches based on a task’s
means and characteristics, and
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• a discussion of general challenges inmovement analysis.

2.2 Related Work

Taxonomies help in guiding researchers to abstract, to synthesize,
and to contemplate about aspects of their research problems and to
develop new methodologies. Here, we give an overview of past sur-
veys and taxonomies for visualization, for computational approaches,
and formovement data in general.

Within the visualization community, Munzner [2014] discusses the
link between why and how visualization systems work and what they
visualize. Brehmer and Munzner [2013] proposed a typology that
bridges the gap between low-level tasks and high-level tasks. Their
domain-agnostic typology is based on both why and how a visualiza-
tion task is performed.

Similarly, Schulz et al. [2013] explored the design space for visualiza-
tion tasks. Theycharacterized tasks in a taxonomyof fivedimensions:
the task’s goal (why), the task’s means (how), data characteristics
(what), the target and cardinality of data entities (where), the order
of tasks (when), and the (type of) users (who). As an example, Schulz
et al. [2013] applied their taxonomy to tasks for climate impact
research. We use two of the dimensions in this chapter, the task’s
means (how) and the task’s characteristics, to categorize methodolo-
gies formovement data.

Lamet al. [2018] extended thework by Schulz et al. [2013] on visualiza-
tion tasksbyorganizingdesignstudypapers intoa two-axes taxonomy
on the specificity, which spans from exploring via describing and ex-
plaining to confirming as task’s goals, and on the number of data pop-
ulations, which can be either a single entity ormultiple entities.

Andrienko and Andrienko [2013] surveyed the state of the art of vi-
sual analytics approaches formovement data. They divided visual an-
alytics systems into four categories: looking at trajectories, looking
inside trajectories, showing a bird’s eye view of movement data, and
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investigatingmovement within its context.

Andrienko et al. [2011] modeled the links between the dimensions
space, time, and themoving entity of the trajectory as a taxonomy for
analytical methods on movement data. They defined tasks by com-
bining properties from these three dimensions. Furthermore, they
differentiatedwhetheranalysesoperatedonthesepropertiesdirectly
(elementary analysis) or whether they worked on (sub)sets of these
properties (synoptic analysis).

In geography, the Space Time Cube (STC) is a representation for
movement data in which time is modeled explicitly as a third dimen-
sion inaddition to the locations in theEuclideanplane [Hägerstraand,
1970]. Bach et al. [2014] gave an overview of all possible operations
on an STC. By defining these operations, they were able to describe
visualization systems for time series as sequences of operations on
an STC. They addressed how existing approaches can be operational-
ized on STCs, including interactive 2D visualizations that use anima-
tion.

Long and Nelson [2013b] surveyed quantitative methods for analyz-
ingmovement data, in which they classified existing approaches into
sevencategories: timegeography, pathdescriptors, similarity indices,
patternandclustermethods, individual-groupdynamics, spatial field
methods, and spatial rangemethods.

2.3 Scope and Focus

In this section, we describe how we devised our typology from study-
ing existing approaches on movement data. First, we studied exist-
ing survey papers on this topic from the preceding section in addi-
tion to handbooks for computational geometry [Goodman et al., 2017;
Sack and Urrutia, 1999] and a survey dedicated to the contributions
of theMOVEproject [Demšar et al., 2015]. From these sources, we col-
lected valuable information fromanarray of references fromvarious
disciplines, such as computational complexity, data mining, compu-
tational geometry, GIS, visualization, movement ecology, and visual
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analytics. Then, we compiled an exhaustive list of analytical tasks in
a bottom-up fashion from these papers, as shown in Figure 1.3. We
merged common topics into a single theme, e.g., reconstructing a
movement path contains approaches for interpolation of trajectories
as well asmapmatching.

The starting points for our typology are theworks byMunzner [2014]
and Schulz et al. [2013]. From the five dimensions distinguished by
Schulz et al. [2013], we selected means because they model actions
and are expressed as verbs, and we chose characteristics because
they cover aspects of the data that interest analysts. We dropped and
mergedsomevalues formeansandcharacteristicsbecause theywere
not generally applicable to movement data, but rather only to visu-
alization systems. By analyzing the relations between the low-level
tasks in terms of task A “is specialization of” B, we introduced a new
abstraction layer. For instance, interesting regions is a specific form
of a clustering or segmentation, so we aggregated these types of ap-
proaches into categorization.

2.4 Typology for Analyzing Movement Data

InChapter 1, we coveredwhy researchers collectmovement data and
what motivates them to analyze trajectory data. We also introduced
(low-level) analytical tasks that researchers can use to compute or vi-
sualize trajectory data.

The objective of the typology in this chapter is to connect the low-
level analytical tasks to the high-level goals that analysts have, e.g., to
discover, explore, or identify patterns in a trajectory dataset. We use
twohigh-level goals tocategorize andabstract the low-level analytical
tasks to typesofanalyseswithsimilarcharacteristicsandmeans:

• How and by whichmeans can we conduct analytical tasks?

• What do these tasks aim to reveal in the data?

These two questions are inspired by the taxonomies by Schulz et al.
[2013] andMunzner [2014]; we adapted them for the spatio-temporal
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properties of trajectory data. The first question is concernedwith the
means of an analytical task and deals with the operations to reach a
goal. A mean is sometimes referred to as action or task, and it gives
insights into how an analytical task is carried out. The second ques-
tion deals with the characteristics that describe particular facets of
the trajectory data which the analytical task aims to reveal. Munzner
[2014] refers to thecharacteristics as targets. Schulzet al. [2013]distin-
guished between low-level characteristics, which a user can perceive
and detect easily, and high-level characteristics, which requiremore
sophisticated techniques tomine.

We adapted and simplified the categories for the means and charac-
teristics to model aspects specific to movement data. In addition to
means and characteristics, we aggregated analytical tasks into types
of tasks with similar means and characteristics. Such a typology al-
lowsus to study thestructuralpropertiesbetween theanalytical tasks
and to identify additional, more abstract topics for movement analy-
sis. In Table 2.1, we show our typology. An X denotes that the analy-
ses use these means and characteristics. An (X) denotes an implicit
dependency or usage of the given means or characteristics. For ex-
ample, all types of analytical tasks in our typology use similaritymea-
sures.

We now describe each part of our typology in more detail. First, we
give an overview of themeans to analyze trajectory data. Next, we re-
view the characteristics of analytical tasks for movement data. Then,
we discuss the different types of analyses in depth.

Addingmetadata, such as a new attribute, by a manual user action is
annotating. Contrarily, derivingnew attributes fromexisting ones is
carried out computationally.

An analysis can have various scopes, and we identified the following
five query operations. Filtering or (sub)sampling of data points is
known as extracting. The identification of regions or individuals is
concerned with computationally detecting and finding associations
in trajectory data. In visualization systems, it is common to give an
overview of the data. Such a bird’s eye view gives a summary of the
dataset. Another important query operation is to compare themove-
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Table 2.1: Our taxonomy for the analysis of movement.
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Derive X
Extract X X
Identify X X
Summarize X
Compare X X
Relation-
seeking

X X X

Characteristics
Trends X X
Outliers X
Features X X X X
Distribution X
Dependencies X
Correlation X X
Similarity X (X) (X) (X)
Network X
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ments of two (or more) individuals by juxtaposing the results of both
trajectories. Contrarily, relation-seeking deals with analyzing possi-
ble links between two (ormore) individuals.

Munzner [2014] identified three high-level characteristics that each
analytical task canhave andwhich also apply to trajectory data. High-
level patterns in adataset canbedescribed as trends. On the contrary,
outliers are data points which do not fit well (or at all) into structures
andwhich represent anomalieswith respect to other data points. The
third high-level characteristic is featureswhich constitute particular
structures of interest.

Beyond these high-level characteristics, we identified other charac-
teristics for trajectory datasets. A distribution encompasses count-
ing occurences of spatio-temporal properties with respect to their
spatial and temporal extent, such as regions or frequencies for differ-
ent years ormonths, to spot typical values aswell as anomalies. With
dependency, we refer to occurrenceswhenmovements in one trajec-
tory influence the movement in another trajectory. The correlation
between (the values of) two trajectories quantifies the (statistical) re-
lationship between the trajectories’ movements. Similarity charac-
terizes how a trajectory resembles another trajectory. A network ex-
presses individuals’ movement in terms of states and the relations
between these states, enabling analysts to reason on higher-level ab-
stractions from themovement data.

Wedividedanalytical taskson trajectorydata into four types inour ty-
pology: alignments, transforms, categorizations, andrepresentations.
Within alignments, we survey approaches that quantify the inter-de-
pendency between two (or more) trajectories. Transforms modify
the number of points within a trajectory either by reducing or by add-
ing locations to the input trajectory. Categorization approaches are
concerned with identifying meaningful parts of trajectories, regions
of interest, or moving entities with specific spatio-temporal proper-
ties. Representations summarize movement by abstracting from
plain trajectories.
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2.5 Overview of Trajectory Analysis Tasks

High-level research questions and goals are related to interpreting
the cues and mechanisms behind movement. New methodologies
achieve these goals to some extent by focusing on low-level
research questions related to a specific phenomenon and by limiting
their attention to only certain aspects of high-level goals. For exam-
ple, take the work by Alewijnse et al. [2014]. Their visualization proto-
type segments trajectories and allows an interactive selection of pa-
rameters. Alewijnse et al. [2014] mention only their high-level goals
within a case study (to distinguish between movement states, such
as migration and stopovers). They do not describe other operations
that ananalystmightwant to investigate, suchas seeking relationsor
identifying trends. To fullyunderstandwhyandhowamethodworks,
it is essential to connect both. Our typology links low-level analytical
tasks to types of analyses.

We now survey each type using the following structure:

Background addresses the setting and the underlying motivation
for applying this analysis type to trajectory data;

Means andCharacteristics concern the links between the aims
and the actions needed to for this analysis type;

State of the Art gives an overview of computational approaches as
well as visualizations for this analysis type (Here we survey the
approaches as such. For a discussion of the computational com-
plexity of the approaches we defer to Chapter 3);

Challenges andOpportunities dealswith limits andconstraints for
this analysis type as well as possibilities for future work.

2.5.1 Alignment

Background. The movements of individuals often influence each
other, for instance, when pursuing a particular goal, e.g., foraging, or
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Figure 2.1: Aligning two trajectories in a monotonous matching (dashed).

when traveling together as a flock or in a particular formation, like a
single file. Therefore, the movements of one individual correlate to
someextentwith themovement of others. Given two (ormore) trajec-
tories, a basic problem is quantifying how similar or dissimilar these
trajectoriesare toeachother. Suchaquantificationgives insights into
how themovements of one individual are related to or depend on the
movements of another individual. Quantifying the interdependency
between moving entities allows analysts to express and trace the in-
fluence between trajectories over time. An alignment captures the
interdependency as amapping from each point of one trajectory to a
point of the other trajectory that is similar.

Means and Characteristics. Alignment methods quantify similar-
ity and correlate locations from two (or more) trajectories. To align
similar features in different trajectories, it is necessary to identify
features. Furthermore, the dependencies between points of one tra-
jectory andpoints of another trajectory are alsoof interest in the com-
putation of alignments.

State of the Art. A variety of alignment methods frommany applica-
tions exist. Alignment methods commonly interpret a trajectory as
a curve or a sequence parameterized/indexed by time. These align-
ments continuouslymap one trajectory onto another trajectorywith-
out reversing time during the mapping. Naturally, these alignments
startsat the firstpointsofboth trajectoriesandendsat theirendpoints.

An alignment method originally used for curve matching is the
Fréchet distance which minimizes the maximum distance between
two trajectories. The Fréchet distance has been applied to computa-
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tional movement analysis [Buchin et al., 2008, 2010]. Lower bounds
are known (see Section 3.4.2) as well as algorithms to compute the
Fréchet distance exactly (see the works by Alt and Godau [1995],
Buchin et al. [2012], or Rote [2014]) or approximately [Driemel et al.,
2012; Dumitrescu and Rote, 2004].

Dynamic timewarping is another alignmentmethod [Berndt andClif-
ford, 1994]. It minimizes the sum of distances between two trajecto-
ries within an alignment. Dynamic time warping is popular within
data mining and database systems. To bypass the near-quadratic
lower bound [Gold and Sharir, 2016], Salvador and Chan [2007] and
Al-Naymat et al. [2009] have developed heuristics.

The edit distance [Wagner and Fischer, 1974] and the longest com-
mon subsequence [Maier, 1978] are also popular alignmentmethods,
which have been applied to trajectory data [Chen et al., 2005; Vlachos
et al., 2002]. All these alignment methods share (conditional) near-
quadratic lower bounds, whichmakes it challenging to compute opti-
mal alignments for large datasets.

Wang et al. [2013] reviewed various alignment methods for time se-
ries experimentally. Among these techniques were dynamic time
warping, the longest common subsequence, and two versions of the
edit distance, but not the Fréchet distance.

Many movement patterns are closely linked to alignments. Anders-
son et al. [2008] developed an algorithm to detect themovement pat-
tern of leadership. Leadership is when one entity is followed by suffi-
ciently many other entities, but is not following another entity itself.
Here an entity is considered to follow another entity if the other tra-
jectory is in the front region, which is a circular sector facing the di-
rection of movement. Similar to leadership, a single file captures a
follow-behind relationship. Buchin et al. [2008, 2010] defined a single
file as a group ofmoving entities inwhich one leads the group, and all
others are following each other.

Similarly, the dynamic interaction measure developed by Long and
Nelson [2013a] detects follow-behind relationships between trajecto-
ries bymakingutilizingof spatial displacements. They applied thedy-
namic interactionmeasure tomovement datasets from grizzly bears
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and ultimate frisbee players on global, local, and episodic temporal
scales.

In Chapter 5, we use alignment methods to quantify action-reaction
patterns for three datasets: two different pigeon datasets and
ultimate frisbee data. We use the computed alignments to visualize
the inter-dependency between the trajectories.

Challenges and Opportunities. Defining and computing an align-
ment for multiple trajectories is challenging since the running time
for computing such alignments grows exponentially in the number
of trajectories. Thus, efficient approximation algorithms are needed
here. Another challenge is visualizing alignments of three or more
trajectories on two-dimensional screens.

To investigatewhen an individual does not interact with another indi-
vidual, it would be useful to define a reference model for no interac-
tion. Such a no-interaction model might vary between applications.
Exploring how computed interaction events are related to actual ob-
served interactionmight be of help to define null models for interac-
tion.

2.5.2 Transform

Background. In applications like sports analysis, locations are
tracked with a high sampling rate (multiple locations per second).
Such high resolutions allow researchers to describe movement
almost continuously. However, this results in large datasets. That
makes it difficult to handle this data computationally, in particular
when methods with high computational complexity need to be used
(see Chapter 3). But applications also often face the opposite prob-
lem, that is, movement datasets which have been captured with low
precision or a sparse sampling rate. Movement analysts are there-
fore in need of transforms, techniques to reduce the number of loca-
tions within a trajectory while preserving the shape of the trajectory
to some extent, on the one hand, and on the othermethods to enrich



2

OverviewofTrajectoryAnalysisTasks 22

trajectories by additional locations to improve the quality of the anal-
ysis on the other hand.

Means and Characteristics. Comparing features of a trajectory is
needed in transforms. Transforms also extract features to enhance
the results of the analysis. Similarly, detecting outliers is central to
transforming trajectories to differentiate regular locations from
anomalies.

State of the Art. Applications need to find a way to reduce the com-
plexity of a raw trajectory, such that the trajectory can be further pro-
cessed efficiently. Curve simplification then addresses the problem
of reducing the complexity of a trajectory by minimizing the num-
ber of vertices of the curve while preserving the original shape of the
curve up to a specific error ϵ. We discuss curve simplification in Sec-
tion 3.3.1 inmore detail.

Figure 2.2: Computing a simplification (in green) from a trajectory.

For some applications, such as cartography, it is important to com-
pute a series of simplifications that are consistent across different
scales [Cao et al., 2006; Visvalingam andWhyatt, 1993]. Consistency
here means that whenever a trajectory/curve is simplified further
(moving from a finer to a coarser scale), the simplification removes
only vertices. We refer to such a simplification as progressive sim-
plification. In Chapter 4, we give the first algorithm to computemin-
imum-complexity progressive simplifications.

Since trajectories are collected as a sequence of discrete locations,
the movement between two locations of a trajectory remains
unknown to the observer if the locations are not sampled frequently
enough. The reconstruction of the original movement path is, there-
fore, an important task because it enables analysts to understand the
actualmovementbyexploiting theexhaustivesetofall possiblemove-
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ment patterns on the movement path. For instance, interpolation of
movement is central to handle intermediate positions between two
locations in sparsely sampled movement data. Linear interpolation
usually works sufficiently well for densely sampled trajectories. By
employing the Brownian bridgemovementmodel (BBMM), Buchin
et al. [2012] were able to compute movement patterns, including en-
counter, avoidance, attraction, regular visits, and following, from
movement data with low sampling rate and thus high uncertainty.
TheBBMMassumesrandommovementbetweenmeasured locations.
Buchin et al. [2015] showed how to integrate environmental context
into a BBMM-based analysis. They demonstrated on two ecological
datasets that the derivation of movement parameters and the move-
ment parameters’ spatial distribution via BBMM is a powerful tech-
nique for computational movement analysis.

Reassigning locations of a trajectory to positions on a road network
of a digitalmap is knownasmapmatching. This transform remedies
the problem of inaccuracies in the tracking of individualsmoving on
a known network. Greenfeld [2002] reviewed several approaches for
mapmatching. Amapmatching algorithmcaneither locally adapt lo-
cations iteratively or remap locations of a trajectory globally. Brakat-
soulas et al. [2005] devised an approach that allows both paradigms
and employs the Fréchet distance to match trajectories onto a street
network. They applied their approach to 45 trajectories from vehi-
cles in Athens, Greece. Similarly, Lou et al. [2009] developed a global
map matching approach that uses geometric and topological struc-
tures of the road network, which furthermore allows to define spatio-
temporal constraints. They compared the performance of their algo-
rithmwith othermapmatching algorithms on synthetic data and the
GeoLife dataset [Zheng et al., 2009]. Newson and Krumm [2009] em-
ployed HiddenMarkovModels in their map matching algorithm for
sparse trajectories.

Challenges and Opportunities. Because global map matching
algorithms generate curves that yield a smaller Fréchet distance to
the original trajectory than incremental map matching algorithms,
and because incremental algorithms run faster than global ones, it
would be worthwhile to investigate how this trade-off could be bal-
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ancedby, for instance, integratingmultiple sensors into amapmatch-
ing algorithm.

Computing optimal simplifications in subquadratic (or ideally, near-
linear) time remains anopenproblem, except for in somespecific set-
tings [Agarwal and Varadarajan, 2000].

2.5.3 Categorization

Background. Understanding thecuesanddriversbehindmovement
motivates researchers to collect and to interpret trajectory data. A
partitioning of (sub)trajectories allows analysts to discern which re-
gions or (pieces of) trajectories are of interest. Assigning categories
to these partitions can be either explicit or implicit. We refer in both
cases to this problem as categorization.

Means and Characteristics. Categorization identifies features of
trajectories that break them into categories. Amethodology for cate-
gorizationderives trends that are prevalent in thedata. Furthermore,
computing such partitions helps in seeking relations between cate-
gories. It is likely that a correlation of spatio-temporal properties ex-
ists within a category.

Figure 2.3: Segmenting a trajectory into three segments: the circular move-
ment (in green), a left turn (in red), and a right turn (in blue).

Stateof theArt (Segmentation). Dividinga trajectory intopieceswith
similar movement parameters, such as speed, heading, or turning
angle, is known as segmentation. Segmentation allows us to detect
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subtrajectories, that describe behavioral states of a moving entity, as
shown in Figure 2.3. There is a trade-off between the number of such
segments and how similar the (sub)trajectory is within a segment.
Given a spatio-temporal criterion on the similarity within a segment,
it is natural to formulate this problemas an optimization problem. To
avoid overfitting, we aim tominimize the number of segments.

In thepast, eitherheuristicsoroptimizationsofaglobalcriterionhave
been considered rather than the minimization of the number of seg-
ments [Aronov et al., 2016]. Aronov et al. [2016] devised a framework
for optimal segmentation, givena so-called start-stopdiagram,which
is a representation of valid and invalid segments on a given trajectory.
The start-stop diagram naturally leads to a quadratic-time algorithm
if a trajectory can be segmented only at data points. Alewijnse et al.
[2014] tackled the quadratic barrier on segmentation for awide range
of criteria. Alewijnse et al. [2014] developed a visualization to allow
an interactive parameter selection for the segmentation criteria, and
they applied their prototype to a dataset of migrating geese.

?

Figure 2.4: Classification of trajectories into two classes: red and blue.
Given an unclassified trajectory (in black), the classification
problem asks to compute a class for this trajectory.

State of the Art (Classification). Classification is concerned with as-
signing (pieces of) trajectories to classes. The goal of a classifier is
to determine the discriminator between the classes. A classification
can have binary classes, e.g., walking or non-walking, or have mul-
tiple categories, such as walking, resting, foraging, etc. The assign-
ment of classes can have different spatial extents. A class can be as-
signed to either entire trajectories or pieces of them. Classification
was originally defined in statistics and later applied inmachine learn-
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ing [Bishop, 2007] and data mining [Zheng, 2015]. The original defi-
nition asks to learn from labels of a training dataset to classify a test
dataset which did not have labels, as shown in Figure 2.4.

Zheng et al. [2008a] and Zheng et al. [2008b] developed approaches to
learn modes of transportation and people’s motion modes and to ex-
perimentally infer the transition between different modes from tra-
jectory data by using techniques from machine learning. TrajClass
[Lee et al., 2008] classifies (sub)trajectories based on the density of
their locations and allows tuning for specific regions. Alewijnse et al.
[2017] classify subtrajectories based on the parameter of amovement
model.

State of the Art (Clustering). Similar to classification, clustering al-
gorithmsaggregate pieces of trajectorieswith similar characteristics,
see Figure 2.5. Computing clusters works either top-down or bottom-

Figure 2.5: Clustering of four trajectories. Each cluster (in red, green, and
blue) captures subtrajectories with similar movements.

up. One type of top-down clustering algorithms are density-based ap-
proaches. The DBSCAN [Ester et al., 1996] and the OPTICS [Ankerst
et al., 1999] algorithms are the most prominent algorithms for point-
based clustering. Andrienko et al. [2018, 2009, 2007] implemented
the OPTICS algorithm to visualize clusters in trajectory data exper-
imentally. Lu et al. [2015a] employed a modified version of the DB-
SCAN algorithm in their visual analytics system to detect clusters of
specific regions in urban areas.

Lee et al. [2008, 2007] devised approaches that combine region-based
classification with density-based clustering to improve the accuracy
of the resulting clusters.
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GaffneyandSmyth [1999]developedaclusteringalgorithmfor trajec-
tories that uses a probabilisticmixture regressionmodel by applying
an EM algorithm on the trajectories. They applied their clustering al-
gorithm to both simulated data and video data.

The subtrajectory clustering by Buchin et al. [2011] employed the
Fréchet distance to detect clusters of predetermined subtrajectory
lengths and with a specified number of moving entities within each
cluster. Gudmundsson and Valladares [2015] explored how to use
GPUs for the subtrajectory clustering algorithm.

In Chapter 6, we present a hierarchical clustering algorithm that is
integrated into a visual analytics system. Weapplied our approach to
a dataset of migratory gulls.

Figure 2.6: A recurring pattern (in blue) within a trajectory. Such patterns
can be either shape-based or distance-based.

State of the Art (Recurring Patterns). Moving entities often follow
the same or comparable similar routes; they also often pursue these
routes repeatedly. The consequent periodicity is observable along
different temporal scales: daily (commuting), annually (migration),
or seasonally. These recurring patterns are often modeled as
sequences, see Figure 2.6. Detecting recurring patterns in a trajec-
tory helps analysts to find subtrajectories with similar movement
characteristics. The approach by de Berg andMehrabi [2016] reports
all subtrajectories thataresimilar toagiven linesegmentwithrespect
to dilation anddirectiondeviation andhas beenapplied to adataset of
soccer players.
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Caoet al. [2007]usedadensity-basedclusteringwithDBSCANtocom-
pute recurring patterns. In their approach, user-specified periods
(days, weeks, or months) define the periodicity of the pattern. Their
approachconsiders timeshifts anddistortions in the trajectories, and
theyevaluated their approachexperimentallyonsyntheticdata.

State of the Art (Interesting Regions). Some places that individuals
visited are more crucial for pursuing a goal than others. Movement
in relation to a place or a region provides an indication about the rele-
vance of a place, for example: howmany individuals visited a place or
howmuch time individuals spent in suchaplace. Interesting regions
can be viewed andmodeled as a specific form of a clustering.

Regions that have been visited by many entities are so-called popu-
lar places. Benkert et al. [2010] studied the problem of finding popu-
lar places. They devised an O(n̂ log n̂)-time algorithm for the discrete
model, given a set of trajectories with a total number of points of n̂
(and atmost nk, where k is the number of trajectories and n the num-
ber of points within a trajectory). Gudmundsson et al. [2013] explored
various optimization problems of square-shaped regions, so-called
hotspots, and devised algorithms for them.

Challenges andOpportunities. A common trait that all approaches
of this type share is that they require a valid discriminator which ap-
propriately describes the desired categorization. This presupposes
prior knowledge of the drivers and mechanisms that underlie move-
ment. Visualizations could help to guide the exploration of viable pa-
rameterizations experimentally.

Because clusters, interesting regions, and recurring patterns share
that they describe regions in the plane, it could be worthwhile to in-
vestigate how to model and visualize the links and dependencies
amongthesecategories, e.g., by incorporating temporalproperties.

2.5.4 Representation

Background. When amovement dataset hasmany trajectories, it is
more prevalent to summarize the trajectories by abstracting
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them conceptually from their locations. A representation remedies
this by superimposing a structureuponall input trajectories. Suchan
abstractionhelps to reducevisual clutter in thedata and thecognitive
load of processing it.

Means andCharacteristics. Representations summarize features,
and they extract dependencies implicitly or explicitly. Comparing
the distribution of the individuals’ locations is also required in rep-
resentations. Representations help analysts in seeking relations be-
tween trajectories as well as identifying movement states and rela-
tionships betweenmovement states (networks).

Stateof theArt. Instatistics, anaveragedescribesa typical valuewith-
in a set of values. A representative for such a set is calculated to ex-
press the typical characteristics. It is calculated from a population of
values. Similar abstractions are needed for movement data. Given
a collection of trajectories, a representative approximates the move-

Figure 2.7: Computing a representative from a collection of trajectories.

mentsof all trajectories toacertaindegreebybeing“in themiddle”of
all trajectories, see Figure 2.7. A representative needs to capture the
progressionof individuals’movements either byusing only locations
fromthe trajectoriesorbyaddingderivedpoints fromthe trajectories
that express centrality.

Buchin et al. [2013a] defined amedian trajectory intuitively by using
pieces of input trajectories and by staying in the middle of them. A
mean trajectory averages locations, one from each trajectory, like
a center of gravity. A median trajectory stays central with respect
to the number of given trajectories; whereas, a mean trajectory does
not. Buchinet al. [2013a] devised twoalgorithms to compute amedian
trajectory: a simple median, based on the arrangement of lines and
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which is computable in O
�
(nk)2
�
time, where k is the number of tra-

jectories and n the number of points in a trajectory, and a homotopic
median, based on geometric and topological concepts andwhich can
be constructed in O

�
(nk)2+ϵ
�
time for ϵ > 0. The running times for

these twomedians are optimal because a median curve is composed
ofO(nk) linesegments,whichcanyieldoutput sizesofup toO

�
(nm)2
�
.

However, the algorithms by Buchin et al. [2013a] are not sensitive to
the time stamps of the data points of the trajectories. By computing a
central trajectory, van Kreveld et al. [2015] tackled the issue of find-
ing a time-sensitive representative. Their central trajectory consists
of points from the input trajectories and switches fromone trajectory
to anotherwhen the smallest enclosing disk of the data points at time
tneeds improvements. InR1, a central trajectoryofcomplexityΘ(nk2)
is computable in O(nk2 logk) time. For trajectories in d-dimensional
space with d > 1, van Kreveld et al. [2015] devised another algorithm
to compute a central trajectory with a complexity of at most O(nk5/2)
in O(nk3) time.

Andrienko et al. [2013] designed a linear-time algorithm to compute a
centroidby iterating throughall trajectories simultaneouslyand find-
ing a central location among the trajectories at corresponding time
stamps. Their techniquepresumes that all trajectories have the same
length.

In a large group of moving entities, we are interested in questions
like who traveled together in a subgroup and for how long. Flocks,
swarms, andmoving clusters [Dodge et al., 2008] address these ques-
tions partially, but little work has been done on considering merg-
ing and splitting between different groups. Buchin et al. [2013b] ad-
dressed this gap by introducing the trajectory grouping structure
and presenting an algorithm that computes it efficiently. Kostitsyna
et al. [2015] extended this work by incorporating contextual informa-
tion into the grouping structure. They used the geodesic distance to
measure the distance between entities where obstacles, e.g., build-
ings, lakes, orwalls, occur. The interactive analysis of grouping struc-
tures for varying parameters was investigated by van Goethem et al.
[2016].
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Challenges and Opportunities. Context, such as geographical re-
gions or weather, provides important information, which can influ-
ence, how we formulate a suitable representative. Integrating con-
textual information into the computation of representations and vi-
sualizing representations in relation to the context is of high impor-
tance.

Representations might be of help when visualizing alignments
among multiple trajectories because a suitable representation can
serve as the basis of a visual abstraction ofmany trajectories.

2.6 Discussion

We reflect on our typology, analysis tasks, andmethods surveyed by
relating gaps and challenges that we synthesized from previous re-
search.

2.6.1 Workflow

Oftenanalytical taskswork in concertwith eachother to (pre)process
data or to improve computational results. We decided not to arrange
them into workflows since it is tedious to enumerate all meaningful
workflows and some analytical methods, e.g., segmentation can ei-
ther be a pre-computational step or the desired end result. Zheng
[2015] surveyedmethodologies for trajectory data within the context
of datamining by identifying a generic workflow frompreprocessing
and indexing of trajectory data tomining of patterns.

2.6.2 Scale and Uncertainty

Trajectory data consists of a sequence of locations over time. Uncer-
tainty of the path between those locations is inevitable, even when
the temporal sampling rate during recording is increased. Therefore,
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granularity and uncertainty can significantly influence an analysis’s
interpretation [Shamoun-Baranes et al., 2011a]. Dodge et al. [2016] ar-
gue that it isessential toanalyzemovementatmultiplescalesbecause
different movement patterns are expressed and characterized at dif-
ferent spatial and temporal scales. Laube et al. [2007] identified four
temporal scales in the analysis of movement: globally, computed on
the entire trajectory; locally, at a specific time stamp; episodic,
computed on a subtrajectory where a spatio-temporal movement pa-
rameterof the trajectory– for instance theheading– ishomogeneous;
and intervallic, on a fixed window of time stamps. Wood et al. [2010]
defined a three-level analysis for collectivemotion that encompasses
bothspatial and temporalgranularity: howindividualmembersmove
within a collective, how the collective moves as a single entity, and
how the collective’s footprint evolves (individuals entering and leav-
ing the collective).

2.6.3 Context

Not only intrinsic factors explain themovements of an individual and
motivate entities to move; external factors also influence how an in-
dividual moves. Analysts, e.g., ecologists, use this contextual infor-
mation implicitly or explicitly in their research [Shamoun-Baranes
et al., 2011a]. Storing information about howmoving entities interact
with their environment is central to improve computational results,
e.g., in segmentation or statistical analysis. Dodge et al. [2016] claim
that only by incorporating and considering all factors in an analysis
a deeper understanding of patterns inmovement data can be gained.
Integrating data from multiple sensors, like accelerator or weather
data, can help in filling the gap in capturing a moving entity’s behav-
iormore thoroughly.

2.6.4 Space and Time

A trajectory’s data points show high auto-correlation for space and
time [Demšar et al., 2015; Shamoun-Baranes et al., 2011a]. The higher
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the sampling rate a trajectory has, the higher the correlation is be-
tween space and time. In our survey, we did not distinguish between
approaches that interpret trajectories as discrete sequences of time-
stamped locations and approaches that (by suitable interpolation) in-
terpret trajectories as continuous movements over time. However,
thecomputational complexitymightdiffer forapproachesdepending
on how the approach interprets trajectories (see Chapter 3).

2.6.5 Interdisciplinarity

Because movement analysis has many applications, collaborations
between researchers working on new methodologies and research-
ers from application domains are crucial to foster innovative, excit-
ing, andunusual newconcepts for the analysis ofmovement [Demšar
et al., 2015; Dodge et al., 2016]. Disseminating these interdisciplinary
efforts can be challenging because finding suitable venues for a spe-
cific target audience across disciplines is difficult.

2.6.6 Specificity of Data Analysis

Lam et al. [2018] proposed a taxonomy for visualization systems that
includes the specificity of an analysis. They delineated a spectrum
of four categories for specificity that ranges from exploring and de-
scribing to explaining and confirming. Demšar et al. [2015] argue
thatmethods frominformationsciences, e.g., visualization,whichare
apt for data exploration, could contribute to confirmatory (hypoth-
esis-driven) approaches in ecology that enhance the (presentation of
the computed) results. In addition, Dodge et al. [2016] point out that
simulation and predictive models for movement will become more
important in the future.
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2.7 Conclusions

We surveyed approaches that analyze movement data in this chap-
ter. These methods come from various backgrounds: geographic in-
formation science, computational geometry, datamining, and visual-
ization. Our contribution is a typology for the analysis of movement.
We aggregated all approaches into four types: alignments that ar-
range trajectories to quantify the inter-dependency between them;
transforms that change thesequenceofpoints ina trajectory toboost
the results for a subsequent analysis; representations that find struc-
tures frommultiple trajectories; categorizations that identify (pieces
of) trajectories with similar properties.

Furthermore, we identified and connected high-level research ques-
tions to our typology by taking themeans and characteristics of anal-
ysis tasks into account. For each type of analysis, we discussed limits
and future work. Then, we synthesized an overview of challenges on
movement data from previous papers.

In the subsequent chapters, we present approaches for some of the
aforementionedanalytical tasks. Weelaborate on the computational
complexity in next chapter.
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3
Computational Complexity

of Problems on Trajectories

3.1 Introduction

Within the last decade, researchers from different fields worked on
developing new techniques and algorithms for movement data
[Demšar et al., 2015]. Each application of movement data has its spe-
cific requirements that concerncomputational aspects aswell as con-
straints related to how to present and to communicate scientific re-
sults.

In this chapter, we study the computational complexity of analytical
methods on movement data for a single trajectory, two trajectories,
andmultiple trajectories. We discuss state-of-the-art algorithms for
computational problems on trajectory data.

The importance of the efficiency of algorithms is immanent if we
want to solve problems for large trajectory datasets. To illustrate the
importance of lowe bounds, consider the problem of computing an
alignment between two trajectories.

We know little about the factors that determines the hardness of a
problemon curves. In the past years, previous research explored and
proved quadratic bounds for problems concerning two curves. For
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large-scale datasets, researchers now need to either restrict their in-
put by limiting the computations to small instances or by imposing
additional constraintson the input trajectories, or theyneed todevise
near-linear time heuristics or approximation algorithms. For prob-
lems concerning a large number of trajectories, however, less is
known about how to solve problems in polynomial time, and which
problems admit such a solution. Take the work by Buchin et al. [2011]
to cluster subtrajectories as an example of a problemonmultiple sub-
trajectories forwhichmore isknown. First, they formulated thisprob-
lem as an optimization problem on multiple subtrajectories. Then,
they showed that it is infeasible to solve it optimally in polynomial
time. This insight led them to resort an existing approximation al-
gorithm [Dumitrescu and Rote, 2004] to compute clusters efficiently.
Therefore, it is essential to use concepts and results from problems
on two trajectories in the context of computational complexity for
problems withmultiple trajectories.

Analyzing the computational complexity of problems on trajectories,
discussed in thischapter,will serveasabasis for thedesignofmethod-
ologies for trajectory data, in the subsequent chapters, which are effi-
cient with respect to time and space.

3.2 Preliminaries

In this section,we reviewcommondefinitions, conjectures, andprob-
lems that have been used in the past to prove lower bounds. A lower
bound for a computational problem provides insights into how effi-
ciently the problem can be solved by any algorithm. If a lower bound
exists for computational problem, then we know that we cannot de-
velop an algorithm for this problem that, in general, solves it faster
than the given lower bound.

Lower bounds need to make assumptions about the computations
that are possible and their efficiency. For instance, lower bounds can
be proven in a restricted model of computation like algebraic com-
putation trees [Ben-Or, 1983], which have been applied to show an
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Ω(n logn) lower bound for computing the Fréchet distance between
polygonal curves [Buchin et al., 2007]. Using algebraic computation
trees for other problems to analyze movement, however, has so far
not been promising.

Often themodel of computation is notmade explicit; instead, a lower
bound is proven by reduction, that is, by showing that solving the
problem at hand would also provide a fast solution to a different, dif-
ficult problem. A classical example of this are NP-hardness proofs
which show that a problem is NP-hard by reducing an NP-hard prob-
lem to it.

NP-hardness is useful in determining whether we can hope to find
a polynomial-time algorithm. But for large datasets, the difference
between linear and quadratic running time may already determine
whether we can compute a solution. To prove (near-)quadratic lower
bounds, conditional bounds have proven to be useful. These are
again based on reductions, but not necessarily fromanNP-hard prob-
lem.

The 3SUM problem asks to find three numbers which sum to zero
given a set of n real numbers. Since the 3SUMproblem is assumed to
haveaquadratic lowerbound, it hasbeenpopular to showconditional
quadratic lowerbounds [GajentaanandOvermars, 1995]. However, to
thebestofourknowledge, therearenoknownreductions from3SUM
to problems concerning polygonal curves, which are of high interest
to trajectory analysis.

A new series of conditional lower bounds emergedwhichmakes use
of thehypothesis that the satisfiability problemforCNF formulas can-
not be solved much faster than by exhaustive search. These lower
bounds seem promising for revealing the computational complexity
of problems in the analysis of movement.
Definition 3.1. The Strong Exponential Time Hypothesis (SETH)
states that for every ϵ > 0, there is a k ∈ N such that the satisfiabil-
ity problemon k-CNF formulaswith n variables andm clauses cannot
be solved inmO(1)2(1−ϵ)n time.

Using SETH that conjectures an exponential running time allows us
to prove polynomial time lower bounds for a problemof interest. We
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use the k-Orthogonal-Vectors problem, as defined by Abboud et al.
[2015], to prove lower bounds on certain problemswith k trajectories.
It is defined as follows, using the notation [n] := {1, . . . , n}.
Definition 3.2 (k-Orthogonal-Vectors (kOV)). Supposewe are given k
lists {α1 }∈[n] , {α2 }∈[n] , . . ., {αk

 }∈[n] of vectors in {0,1}d. We need
to decide whether there are k vectors α11 , α

2
2
, . . ., αk

k
with

d∑
h=1

∏
t∈[k]

αt
t
[h] = 0.

Any such collection of vectors is called orthogonal.

For example, given these {0,1} vectors α1, α2, . . . , αk with the follow-
ing values 

α1

α2

...
αk

 =

0 1 . . . 0 1
1 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 1 1

 ,
then α1, α2, . . . , αk are orthogonal vectors.

Byusing a specialized versionof kOV, the 2-Orthogonal-Vectors prob-
lem, we can prove lower bounds on problems on a single trajectory
and on two trajectories. These proofs encode orthogonal vectors and
non-orthogonal vectors differently in the reduction so that they yield
specific values of the computational problem to which they want to
reduce to.
Definition 3.3 (2-Orthogonal-Vectors (2OV)). Suppose we have two
lists {α}∈[n] and {β}∈[n] of vectors α, β ∈ {0,1}d. We want to de-
cide whether there is a pair α, βj satisfying

d∑
h=1

α[h] · βj[h] = 0.

Wecall such a pair of vectors orthogonal.

The k-Orthogonal Vectors problem is linkedwith the SETHby the fol-
lowing lemma, which has been studied by Abboud et al. [2015] and
Williams [2005].
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Lemma 3.1. If there is an ϵ > 0 such that k-Orthogonal Vectors on n
vectors in {0,1}dwith d = Ω(logn) canbe solved inO(nk−ϵ) time, then
SETH is false.

3.3 Single Curve Problems

Some of the most basic problems on movement data have been for-
mulated as computational problems for a single trajectory. These in-
clude simplifying a trajectory, segmenting a trajectory into pieces
with similar movement parameters, and reconstructing the original
movement path from a trajectory with discrete locations.

An important task is simplifying a trajectory to obtain a trajectory of
lower complexity which approximates the (original) trajectory suffi-
ciently well. We give a more detailed overview of simplification in
Section 3.3.1. In Section 3.3.2, we show that a subquadratic-time algo-
rithmisunlikely toexist for thesimplificationprobleminhighdimen-
sions.

3.3.1 Simplification

Many applications need to dealwith a vast amount ofmovement data.
New sensor technology allows researchers to collect trajectory data
at an increasedsampling rate. Someanalysesneed to reduce thecom-
plexity of a raw trajectory so that the trajectory can be compressed,
stored, visualized, and analyzed furthermore efficiently.

To simplify a trajectory based on its geometry, the trajectory can be
interpreted as a polygonal curve. Then, the problem of simplifying a
trajectory can be seen as the problem of minimizing the number of
vertices of the curvewhile sufficiently approximating and preserving
the original shape of the trajectory. The extent of the approximation
relies on a tolerance value that controls the quality of the simplifica-
tion. The simplification problem is defined formally as follows:
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Definition 3.4 (Simplification). Given

1. a trajectory T as a sequence of n time-stamped points (p, t) ∈
Rd+1, where p denotes a location in the d-dimensional plane,
t ≥ 0 a time stamp, and t(p) = t,

2. an upper bound of the number of points included in the simpli-
fication: M ∈ N+ ,

3. a tolerance value ϵ > 0 thresholding the error of the simplifica-
tion, and

4. anerror criterion δ(ppj,T [ppj]) comparing a line segment ppj
to the corresponding subtrajectory

T [ppj] := 〈(p, t), (p+1, t+1), . . . , (pj, tj)〉
to decide whether T [ppj] is at most ϵ far from the line segment
ppj, with respect to a distance measure, e.g., the Hausdorff dis-
tance or the Fréchet distance,

we want to find an ordered subsequence S = 〈s1, s2, . . . , sm〉 of the
points 〈p1, . . . , pn〉, such that

1. m ≤ M
2. t(sj) < t(sj+1) for 1 ≤ j < m
3. s1 = p1 and sm = pn,
4. If sj = p and sj+1 = pk, then δ(sjsj+1,T [ppk]) ≤ ϵ for 1 ≤ j < m.

We then call S an (M, ϵ)-simplification of T .

Another way of defining a simplification is to allow points/vertices in
S which are not points from the sequence T . This version of the sim-
plification problem permits amore flexible composition of a simplifi-
cation and finds simplifications of smaller tolerance values ϵ.

Wecandefine theerrorcriterion δ invariousways [Imaiand Iri, 1988].
With an error criterion δ, we can choose frommany similarity mea-
sures to determine the error between a subtrajectory T [ppj] and a
line segment ppj of the computed simplification S. Next, we present
themost common error criteria for the simplification problem.

A common way to define a tolerance zone is by displacing the line
segment ppj by ϵ and then extending this zone by half circles around
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p

pj ϵ

ϵ
pk

pk+1

p

Figure 3.1: Example for the line segment model on ppj using the Euclidean
distance d2. The subtrajectory T [ppj] including pk and pk+1 is
not approximated by ppj. ppj approximates the subtrajectory
that includes p.

p and pj with ϵ as the radius, as shown in Figure 3.1. This model is
known as the line segment model [Imai and Iri, 1988]. If all points
of the subtrajectory T [ppj] lie within the tolerance zone of ppj, then
ppj is a valid simplification for that subtrajectory, i.e., ppj approxi-
mates T [ppj] . The line segment model corresponds to taking the
Hausdorff distance [Hausdorff, 1914] as error criterion δ. Other tol-
erance regions have been considered. For instance, the line model
takes the region between the lines displaced by ϵ as its tolerance zone
for a line segment of the simplification. A popular method to mea-
sure similarity between curves is the Fréchet distance [Alt and Go-
dau, 1995]. In this setting, the error criterion δmeasures the Fréchet
distance between T [ppj] and ppj, and ϵ represents the Fréchet dis-
tance.

The simplification problem, as defined in Definition 3.4, is so far not
stated as an optimization problem. There are two ways of defining
simplification as an optimization problem.
Definition 3.5 (min-# Simplification). Given T , ϵ, and δ from Defini-
tion 3.4, amin-#-simplification is an (M, ϵ)-simplification for themin-
imal M that admits an (M, ϵ)-simplification. We refer to the problem
of computing such a simplification as themin-# problem.
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Definition 3.6 (min-ϵ Simplification). Given T ,M, and δ from Defini-
tion 3.4, amin-ϵ-simplification is an (M, ϵ)-simplification for themini-
mal ϵ that admits an (M, ϵ)-simplification. We refer to the problem of
computing such a simplification as themin-ϵ problem.

For common distance measures δ, the min-ϵ problem can be solved
using an additional O(logn) factor by the min-# problem [Imai and
Iri, 1988]. Thus, amin-ϵ simplification can be solved by any algorithm
for the min-# problem [Imai and Iri, 1988]. We therefore focus on
themin-# problem and refer to amin-# simplification as the optimal
simplification.

We now survey previous results for the problem of computing a sim-
plification on a polygonal curve.

Algorithms for themin-ϵ and themin-#problemswith running times
O(n2 logn) and O(n2), respectively, are known for polygonal curves
in the plane [Chan and Chin, 1996]. For the L1-metric, Agarwal and
Varadarajan [2000] presented an O(n4/3+ϵ)-time algorithm.

Imai and Iri [1988] proposed one of the first optimal simplification al-
gorithms by computing a shortest path in a directed graph as an op-
timal simplification. As graph we take the complete graph with the
points p as vertices andedgesoriented fromsmaller to larger indices.
Each edge has a weight that captures the error measure of the corre-
sponding line segment, that is, the measure δ between the line seg-
ment and the corresponding subcurve. An edge of this graph is also
referred to as a shortcut. For a given ϵ > 0, an edge is a valid short-
cut when the weight of the edge is smaller or equal to ϵ. The short-
cut graph is the graph containing only valid shortcuts. A simplifica-
tion can be computed by constructing the shortcut graph, and then
computing the path from the first to the last vertex that uses as few
edges as possible. Thus, a simplification can be computed in O(ƒ (n) +
n2) time where ƒ (n) describes the costs of constructing the shortcut
graph. Chan and Chin [1996] showed that ƒ (n) = O(n2) for the Haus-
dorff distance (the line segment model). The graph approach is flex-
ible; it can be used with other error measures, such as the Fréchet
distance and covering rectangles [Imai and Iri, 1986].
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Applications often use non-optimal algorithms, specifically, the heu-
ristic by Douglas and Peucker [1973]. The heuristic works as follows:
it determines whether for a line segment ppj (initial call:  = 1, j =
n) each pk ∈ T [ppj] is at distance ϵ to ppj. If so, it returns ppj as a
valid simplification. If not, it identifies the point pk in T [ppj] farthest
from ppj, then recurses on the two subproblems: 〈p, p+1, . . . pk〉 and
〈pk , pk+1, . . . , pj〉, andoutputs the concatenationof the simplifications
from the subproblems as the simplification from p to pj. The output
of this algorithm isneither amin-# simplificationnor amin-ϵ simplifi-
cation. The worst case running time of this heuristic is O(n2). Hersh-
berger and Snoeyink [1994] showed that theDouglas-Peucker heuris-
tic can be implemented to run in O(n logn). The algorithm byHersh-
bergerandSnoeyink [1998] improved that running time toO(n log∗ n)
fornon-self-intersectingpolygonal curvesusing the linemodel.

Cao et al. [2006] investigated simplifiying trajectories and how to de-
sign sound query spatio-temporal operations by modeling 2-dimen-
sional trajectories in R3, incorporating the time stamps in an
additional dimension, and projecting the data points in R3 back into
the plane. Gudmundsson et al. [2009] proved the soundness of all
operations for the line segment model. Additionally, Gudmundsson
et al. [2009] devisedanapproximative versionof theDouglas-Peucker
heuristic for trajectories by applying theDouglas-Peucker simplifica-
tion to projections of the trajectory in R3. The running time for this
algorithm is O(n log2 n) for the line model and O(n log3 n) for the line
segmentmodel.

Agarwal et al. [2005] devised a greedy approximation algorithm for
curve simplification that runs in O(n logn) time and returns a simpli-
fication for a given ϵ that does not have more vertices than amin-ϵ/2
simplification. Their algorithmworkswith various error criteria, e.g.,
the Fréchet distance.

For curves inRd, Barequet et al. [2002] developed efficient algorithms.
Their algorithms run innear-quadratic time for d = 3 and in subcubic
time for d = 4. When the distance ismeasured according to the L1- or
the L∞-metric, then their algorithms achieve a running time of O(n2)
and O(n2 logn) formin-ϵ andmin-#, respectively, in any fixed dimen-
sion. In particular, for L∞ the dependency on the dimension is only a
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small-degree polynomial. It is possible to use any Lp norm. By trans-
forming the simplification problem into the off-line ball-inclusion
testing problem, Barequet et al. [2002] enhanced the graph construc-
tion for shortcuts. An efficient data structure for the off-line ball-in-
clusion testing problem enabled Barequet et al. [2002] to obtain the
precedingrunning times forsimplification inhigherdimensions.

3.3.2 Lower Bound on Simplification

It is a longstanding open problem whether the (near-)quadratic run-
ning timecanbe improved for finding theoptimal simplification,min-
#, for the line segmentmodel [Agarwal andVaradarajan, 2000].1 Fur-
thermore, to the best of our knowledge, there has not been any lower
bound established for the simplification problem so far.

We prove that, at least in a sufficiently high (non-constant) dimen-
sion, amin-# simplificationcannotbecomputed insubquadratic time
unless SETH fails. For L∞, our construction shows that the algorithm
by Barequet et al. [2002] essentially is optimal in high dimensions, as-
suming SETH. We focus in this proof on a conditional lower bound
on theHausdorff distance, although the reduction also applies to the
Fréchet distance.
Theorem 3.1. Assuming SETH, there is no O(n2−ϵ)-time algorithm
that optimally, min-# or min-ϵ, simplifies a polygonal curve with n
edges in Rd with d = Ω(logn) dimensions for any ϵ > 0 using
ϵ-tolerance zones in the L1-, L2- or L∞-metric.

We prove this theorem by reducing the 2-Orthogonal Vectors prob-
lem to the simplification problem. Given two lists of 0/1-vectors
{α}∈[n] and {β}∈[n] in dimension d, we interpret each vector as a
point in dimension d + 1, as follows: we define α̂[h] := α[h] for 1 ≤
h ≤ d and α̂[d + 1] := −δ with δ = 2d2. We define β̂[h] analogously,
except that β̂[d + 1] := δ.

The idea of the reduction is illustrated in Figure 3.2. We construct
a curve that moves from a starting point through all α̂, then passes

1See also http://cs.smith.edu/~orourke/TOPP/P24.html.

http://cs.smith.edu/~orourke/TOPP/P24.html
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(0, . . . ,0,−δ) (0, . . . ,0, δ)

{0,1}d × {−δ} {0,1}d × {δ}
start, end: 0

α̂ ∈ β̂ ∈

checkpoints

Figure 3.2: Construction for the simplification lower bound.

through d checkpoints, continues through all β̂, and finally reaches
an endpoint. The threshold ϵ for the simplification is chosen such
that all points α̂ have apairwise distance smaller than ϵ, and similarly
for the points β̂.

If the two corresponding vectors α and β are orthogonal, then the
checkpoints q will have a distance of at most ϵ to the line segment
from α̂ to β̂j, see Figure 3.3. In this case, the resulting simplification
uses the starting point, one point α̂, one point β̂j, and the endpoint,
thus four points in total.

If α and β are non-orthogonal, then some checkpoints lie outside of
the tolerance zone for the embedded line segment α̂β̂j where α̂ =
1 and β̂j = 1, so at least one checkpoint q needs to be included in a
simplification, see Figure 3.3. Hence, a simplification then consists
of at least five points: the starting point, a point α̂, a checkpoint q, a
point β̂j, and the endpoint.

α̂ = 0, β̂j = 0 α̂ = 0, β̂j = 1 α̂ = 1, β̂j = 1

β̂jα̂
q

qα̂

β̂j β̂jα̂

q

Figure 3.3: Examples for different values of {0,1} vectors α̂, β̂j: (i) and (ii)
show that the checkpoints q for orthogonal vectors are approxi-
mated by the tolerance zone of the line segment α̂β̂j. For non-
orthogonal vectors, see (iii), the checkpoints lie outside of the
tolerance zone.
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To complete our embedding, we need to define how we compose the
input curve A for the simplification problem. Let us define
A = 〈0, . . . , m〉 with m = 2n + 2 + d vertices by 0 = m = (0, . . . ,0),
 = α̂, for 1 ≤  ≤ n, n+ = q, for 1 ≤  ≤ d, and n+d+ = β̂, for 1 ≤  ≤ n.
The checkpoints q ∈ Rd+1 are defined as

q[h] =


0 for h = d + 1

−δ′ for h = 
1
4 otherwise,

for 1 ≤  ≤ d, where δ′ will be chosen later depending on the met-
ric.

Proof of Theorem 3.1 under the L∞-metric. By setting ϵ = 1 and δ′ =
1/2, we impose that every simplification needs to include at least 0,
one point α̂, one point β̂j, and m.

Assume there are orthogonal vectors α and βj. Let ℓ(t) be the line seg-
mentbetween α̂ and β̂j parameterizedby t in the (d+1)-th coordinate.
For themidpoint ℓ(0) of the segment, we have

ℓ(0)[h] =


α̂+β̂j
2 ∈
¦
0, 12
©

for 1 ≤ h ≤ d
0 h = d + 1.

Thereby, all q have a distance less than 1 to ℓ(0) and are therefore
within distance ϵ to the segment α̂β̂j.

In contrast, let us assume α and βj are non-orthogonal. In this case,
there is a coordinate 1 ≤ h ≤ d such that α̂[h] = β̂j[h] = 1. It follows
that ℓ(t)[h] = 1 for all t ∈ [−δ, δ], and therefore

d∞(ℓ(t), qh) ≥ 1 − qh[h] > 1 = ϵ.

Thus, for the line segment α̂[h]β̂j[h], qh has a distance larger than ϵ
to this line segment. Consequently, if there is no pair of orthogonal
vectors, a simplification for distance ϵ requires at least five vertices
because we need to include qh.
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Proof of Theorem 3.1 under the L1-metric.
We set ϵ = d and δ′ = 3/4d − 1/4 to enforce to include at least four
points in the simplification: 0, a point α̂, a point β̂j, and m.

By the same argument as for L∞, we induce a simplification with four
vertices if α and β are orthogonal since

d1(q, ℓ(0)) ≤ d − 1
4
+ δ′ +

1

2
= d = ϵ.

Now again consider the case that all α and βj are non-orthogonal, so
there is a coordinate 1 ≤ h0 ≤ d, such that α̂[h0] = β̂j[h0] = 1. We
show that d1(ℓ(t), qh) > ϵ for all t ∈ [−δ, δ] . We can restrict our at-
tention to t ∈ [−ϵ, ϵ] due to the (d + 1)-th coordinate. Now consider a
coordinate h ̸= h0, d + 1. If α[h] = βj[h] = 0, then ℓ(t)[h] = 0. Other-
wise, ℓ(0)[h] ≥ 1/2 and ℓ(t)[h] ≥ ℓ(0)[h](1 − ϵ/δ) for t ∈ [−ϵ, ϵ] . Conse-
quently, for any t we obtain

d1(ℓ(t), qh) ≥ (d − 1)
�
1

2

�
1 − ϵ

δ

�
− 1
4

�
+ 1 − δ′

=
�
d − 1
4
+ δ′ +

1

2

�
+
1

2
− (d − 1)ϵ

δ

= ϵ +
1

2
− (d − 1)ϵ

δ
> ϵ.

Thus, there is an optimalmin-# simplification that uses exactly four
vertices if there is an orthogonal pair.

Proof of Theorem 3.1 under the L2-metric. In thiscase,weset ϵ =
p
d,

and we further fix δ′ = −1/2 + p15d + 1/4, which implies that δ′ > 0
and that
Æ
(d − 1)/4 + (1/2 + δ′)2 = ϵ. By the choice of δ′ and assum-

ing orthogonal vectors α and β, we induce points α̂ and β̂ that approx-
imate all q with distances of at most ϵ.

Now again consider a pair of non-orthogonal vectors with α[h0] =
βj[h0] = 1. It is sufficient then to prove that d2(ℓ(t), qh)2 > ϵ2 = d for
t ∈ [−ϵ, ϵ] . Using the same derivation as for L1, we obtain

d2(ℓ(t), qh)2 ≥ (1 + δ′)2 + (d − 1)
�
1

4
− ϵ

δ/2

�2
.
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The first summand is larger than 15/16d + 1/16 + 1/4 while the sec-
ond is larger than (d − 1)/16 − (d − 1)ϵ/δ/4 > (d − 1)/16 − 1/8. Hence,
qh has a distance larger than ϵ to the segment, lies outside of the line
segment’s tolerance zone, and enforces that the optimal simplifica-
tion consists of at least five points.

Theorem 3.1 follows from these proofs. As a result of this, we have
shown that we can reduce the 2-Orthogonal Vectors problem in d di-
mensions to an optimal curve simplification,min-# ormin-ϵ, in d + 1
dimensions for the L1, L2, and L∞ metrics. By this lower bound, we
can therefore assume that for sufficiently large dimensions, we can-
not compute a simplification in subquadratic time.

3.4 Problems on Two Trajectories

Trajectories do not only occur in isolation. Researchers in applica-
tion fields, including biology, geography, and sports analysis, usually
track severalmoving entities at the same time. In this section, we sur-
vey the computational complexity of problems involving two trajecto-
ries at a time.

Determining the correlation and dependency of one moving entity
to another one is fundamental to understanding the relationship be-
tween those trajectories. As mentioned earlier, we view trajectories
as (time-stamped) polygonal curves, and we thus discuss computa-
tional problems concerning pairs of polygonal curves in the follow-
ing.

3.4.1 Overview

The computation of similarity between two curves has been studied
extensively within the last two decades. Computing similarity is the
most important problem between two curves, and the analysis of in-
teraction between trajectoriesmakes heavy use of existing similarity
measures.
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First, we review approaches on computing interaction between tra-
jectories briefly. Then, we survey methods for computing similarity
in more detail by addressing how they can be used to construct an
alignment between the trajectories.

Interaction is the inter-dependency between moving objects
[Doncaster, 1990]. Various aspects of interaction can be captured by
detecting theunderlyingmovementpatternsof leadership, single file,
or following. Naturally, these types of movement patterns apply to
two andmore trajectories.

Andersson et al. [2008] developed an algorithm to detect the move-
mentpatternof leadershipby followinga leader in the vicinity of a cir-
cular sector. Their algorithm to detect leadership runs in linear time
and space for two trajectories. For k trajectories, their algorithmruns
in O(k2n) time and O(nk) space for discrete time and in O(k2n logk)
time and O(nk) space for continuous time.

Similar to leadership, a single file captures a follow-behind relation-
ship by a leadership of one moving entity and all others follow each
other [Buchin et al., 2008, 2010]. Buchin et al. [2008] expressed a
follow-behind relationship by one trajectory moving along a similar
path as the other, but with a (possibly varying) time shift. This follow-
behind relationship is computable for two trajectories in O(nkg)
time and O(n + km) space, where kg (resp. km) is the average
(resp. maximum) number of data points from the second trajectory
thathaveasuitable timeshift relative toadatapointof the first curve.

3.4.2 Alignment Methods

A central problem for two trajectories is computing their similarity
in shape in order to capture the inter-dependency between themove-
ments. We survey the most common techniques to align two trajec-
tories. Thesemethods usually compute only a single value to express
the similarity. Any of the methods, that we discuss, however, can be
modified to output a monotone matching between the trajectories.
A monotone matching starts with an edge at the first point of each
trajectory and ends with an edge at the last point of each trajectory.
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Monotone matchings require that if a point p on one trajectory T1 is
matched to apoint q of another trajectory T2, thenanypoint after p on
T1 needs to bematched to either q or a point succeeding q on T2. Such
a matching provides insights into the structure of the inter-depend-
ency between the trajectories because themonotonicity allows us to
capture local events between the moving entities while optimizing a
global criterion for the alignment. A discretematching contains only
locations of the input trajectories; whereas for a continuous match-
ing, we allow all points that yield amonotonematching.

We discuss distances between trajectories instead of similarity mea-
sures because a distance can be easily converted to a similarity mea-
sure and vice versa by taking the inverse.

The Fréchet distance is an intuitive measure that describes the re-
semblance of shapes between two curves, which, naturally, applies
to two trajectories. Itminimizes themaximumdistance for anymono-
tonematchingbetween thecurves. Alt andGodau [1995]provided the
first known algorithm for the continuous Fréchet distance between
polygonal curves which runs in O(n2 logn) time. Eiter and Mannila
[1994]developedanO(n2)-timealgorithmfor thediscreteFréchetdis-
tance.

The fine-grained complexity of the (discrete) Fréchet distance be-
tween two curves has recently attracted a lot of attention. After a long
period without major progress, Agarwal et al. [2014] devised a sub-
quadratic O
�
mn log logn

logn

�
-time algorithm for the discrete Fréchet dis-

tance on the word RAM. Buchin et al. [2014] developed a randomized
algorithm for the continuous Fréchet distance with a running time
slightly better than the classic bound of O(n2 logn) [Alt and Godau,
1995]. Buchin et al. [2012] introduced a new notion of locally correct
Fréchet matchings where every submatching of the matching
betweenthecurvesminimizes its localFréchetdistance. A locallycor-
rect Fréchet matching is computable in O(n3 logn) time for the con-
tinuous Fréchet distance and in O(n2) time for the discrete Fréchet
distance.

Answering a question posed byBuchin et al. [2014], Bringmann [2014]
showed that the (discrete) Fréchet distance cannot be computed in
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O(n2−ϵ) time, for any ϵ > 0, assuming the Strong Exponential Time
Hypothesis (SETH). Bringmann and Mulzer [2016] refined and
extended this result. They proved this lower bound by reducing 2OV
to the discrete Fréchet distance. Moreover, Bringmann and Mulzer
[2016] showed that there cannot be an 1.399-approximation for the
Fréchetdistance in subquadratic running timeassumingSETH.

An important alignment method for time series is Dynamic Time
Warping (DTW). DTW minimizes the sum of distances on a mono-
tone matching between the trajectories. We can transform the clas-
sical O(n2)-time dynamic program for the discrete Fréchet distance
into DTWby replacing themx-operation by a sum. Berndt and Clif-
ford [1994] defined DTW and the original algorithm using dynamic
programming to compute an alignment in O(n2) time.

Applications in data mining, speech recognition, and database sys-
temshaveusedDTWextensively in thepast. Due to growingdatasets,
heuristics and approximation schemes for DTW have been
developed to boost the running time. Salvador andChan [2007] devel-
oped FastDTW, a linear-time heuristics for DTW, assuming the time
series can be simplified and subsampled in linear time. Their multi-
level approachwhich recursively projects aDTWpathof a lower reso-
lution to one of higher resolution performedwell in practice. The ap-
proximation error depends on the chosen resolutionof the recursion.
Al-Naymat et al. [2009] proposedaheuristic, SparseDTW,whichuses
pruning to omit cells in the DTW computation. The running time,
however, can still be O(n2) in the worst case.

Recently, Gold and Sharir [2016] devised an exact algorithm for com-
puting DTW on one-dimensional time series that runs in
O(n2 log log logn/ log logn) time. It is possible to extend their
algorithm to compute DTW in Rd with d > 1 assuming the distance
metric used is polyhedral.

TheworkbyBringmann [2014] triggeredproofs of a conditional lower
boundalso fordynamic-timewarping [Abboudetal., 2015;Bringmann
and Künnemann, 2015]. Assuming SETH, DTWcannot be computed
in less thanO(n2−ϵ) time for any ϵ > 0. Abboudet al. [2015] proved this
lower bound froma variant of the 2OVproblemon0/1-strings over an
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alphabet of size five. Bringmann and Künnemann [2015] gave a proof
for the same lower bound on a 1D curve of binary strings of values
{0,1,2,4,8} in R, in which they encoded each coordinate of a curve
in a four-bit representation.

The Edit Distance (ED) is a popular method to align strings, correct
spelling, or process natural languages [Wagner and Fischer, 1974].
Wecanemploya similardynamicprogramas forDTWwherewesub-
stitute the sum of the distances by the sum of unit costs. In addition,
we require checking whether two elements p ∈ TA and qj ∈ TB are the
same or close d(p, qj) ≤ ϵ. If this is the case, we do not charge the
simultaneous movement of both entities within the matching with a
unit. The dynamic program for ED runs in O(n2) time.

Since ED has primarily been designed for and applied to mostly dis-
crete sequences, such as strings, and not for numerical values, Chen
et al. [2005] adapted ED for such sequences as Edit Distance on Real
Sequences (EDR).

Masek andPaterson [1980] devised anO(n2/ logn)-time algorithm for
ED. After a long period, Gold and Sharir [2016] improved the upper
bound on ED to an O(n2 log log logn/ log logn) running time for a geo-
metric version of the ED, and they adapted their algorithm for DTW
to ED.

Similar to DTW, Abboud et al. [2015]; Bringmann and Künnemann
[2015] showed that a subquadratic-time algorithm for ED cannot exist
assuming the SETH.

The Longest Common Subsequence (LCSS) is the classic method to
find the longest subsequence of one string in another string [Maier,
1978]. For trajectories, LCSS essentially translates into finding the
longest subtrajectory that is similar to another trajectory. LCSS can
beseenasa restrictedandsimpler versionofEDbecause thedynamic
programs are identical apart from that only two of the three opera-
tions in the ED are allowed within LCSS; namely, LCSS does not per-
mit insertion operations. This yields an O(n2) running time for the
dynamic program.
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To show that LCSS cannot be computed in subquadratic time assum-
ingSETH,BringmannandKünnemann[2015]andAbboudetal. [2015]
reduced from a version of the 2OV problem to LCSS. Abboud et al.
[2015]used in theirproof stringsoveranalphabetof size seven,where-
as Bringmann and Künnemann [2015] used binary strings, in which
eachcoordinatevalueof thecurve isencodedbya five-bit string.

3.5 Problems on Multiple Trajectories

Most datasets involve more than just one or two individuals. Some
analyses can easily be extended to multiple moving entities, but for
others, a novel, specific analyticalmethodologyneeds to be designed.
Usually, these methods are computationally more involved because
computationsonmultiple trajectories at the same timeareexpensive.
However, little is known about what determines whether a polynom-
ial-time algorithm can exist for such problems and when faster alter-
natives, suchasapproximationsorheuristics, needs tobedevised.

In this section, we therefore survey both upper and lower bounds for
problems involving multiple trajectories. We conclude by proving a
lower bound on the Fréchet distance formultiple trajectories.

3.5.1 Overview

Buchin et al. [2011] devised an algorithm to cluster similar subtrajec-
tories by employing an approximation algorithm for the Fréchet dis-
tanceon the concatenationof the trajectories. Their algorithmunder
the discrete Fréchet distance runs in O(n2 + nkℓ) time and uses O(nℓ)
space, where ℓ is the length of each subtrajectory measured in time
stamps. ℓ is bounded by n/k, and kℓ is in order of n. Under the continu-
ous Fréchet distance, we can compute a cluster of subtrajectories in
O(n2ℓ) time that uses O(nℓ2) space.

If a clustering algorithm assigns labels to clusters, then this problem
in the context of trajectories is also known as classification. A classi-
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fication may stem from either a clustering or a segmentation, but it
can also be directly computed. Alewijnse et al. [2017] gave an O(m2 +
km logm)-time algorithm to classify k trajectories usingm parameter
values in a parameterized movement model. Buchin et al. [2016] ex-
plored a new concept of flow diagrams to fill the gap between clas-
sification and clustering. A flow diagram is a sequence of activities
that represents many state sequences. They showed that computing
aminimal flowdiagramisW[1]-hard if thenumberof state sequences
is variable, developed several heuristics for flow diagrams and evalu-
ated them experimentally on varying parameterizations.

Naturally, we can define an alignment between k trajectories at the
same time (see Section 3.4.2). To find an alignment among multiple
movingentities simultaneously, weneed to extendournotionof a dis-
tance norm tomultiple trajectories.

DumitrescuandRote [2004] defined theFréchet distanceon k curves.
The Fréchet distance is the minimal longest pairwise distance over
all monotonousmatchings among the trajectories then. Dumitrescu
andRote [2004]deviseda2-approximationalgorithmbyconstructing
theFréchetdistance fromthepairwisedistancesonthek curves.

To compute amatching among k trajectories simultaneously, we can
adapt the aforementioned O(n2)-time algorithms for computing
DTW,LCSS, theEdit distance, and theFréchetdistanceon twocurves
into dynamic programs with an O(nk) running time.

Little is known about lower bounds for those alignment methods on
multiple trajectories. Abboud et al. [2015] showed a lower bound on
LCSS that there cannot be an algorithm in sub O(nk−ϵ) time for any
ϵ > 0 and k strings over an alphabet of sizeO(k) assuming SETH.

It is still an open problem to show conditional lower bounds for other
alignmentmethods, such as DTW and the Edit distance, onmultiple
curves. We show a similar lower bound asAbboud et al. [2015] for the
discrete Fréchet distance on k curves, as discussed in the following
section.
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3.5.2 Lower Bound on the Fréchet Distance

Theorem3.2. For any ϵ > 0, the discrete Fréchet distance of k planar
point sequences of length n cannot be computed in O(nk−ϵ) time, un-
less SETH fails.

We show the lower bound on the discrete Fréchet distance between
k curvesbyareduction fromthe k-OrthogonalVectorsproblem. First,
weneedto introducesomenotation, so thatwecanproveTheorem3.2.

Let A1, . . . , Ak be k sequences of points in the plane, and for each  =
1,2, . . . , k, we set A = 〈1, . . . , n 〉. By j[h], for h = 1,2, we denote the
h-th coordinate of j. We set S = [n1] × [n2] × · · · × [nk] .
We define a coupling of lengthm on S as a sequence C = 〈C1, . . . , Cm〉
such that we have C ∈ S, C1 = (0,0, . . . ,0), Cm = (n1, n2, . . . , nk), and
C+1[h] = C[h] or C+1[h] = C[h] + 1, for all  = 0, . . . ,m − 1 and h =
1, . . . , k. A coupling C defines an alignment of the curves A1, . . . , Ak,
and we define the coupled distance as

dC(A1, . . . , Ak) :=mx
¦
d(hC[h] , 

h′
C[h′]) | 0 ≤  ≤m,1 ≤ h, h′ ≤ k©

where d denotes the Euclidean distance. Let C be the set of all pos-
sible couplings on A1, . . . , Ak ; then, the discrete Fréchet distance is
defined as

dF(A1, . . . , Ak) :=min{dC(A1, . . . , Ak) | C ∈ C} .

Next, we describe our reduction.

Proof of Theorem 3.2. Suppose we have k lists {β}∈[n] , {αt
 }∈[n] , t ∈

[k − 1], of vectors αt
 , β ∈ {0,1}d. From these vector lists, we want

to construct k curves B,A1, A2, . . . , Ak−1. The encoding of curve B is
slightly different from the ones of the other k−1 curves. The discrete
Fréchet distance among B,A1, A2, . . . , Ak−1 will be 1 if the given vector
lists contain a collection of k orthogonal vectors, and strictly larger
than 1, otherwise.
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The coordinates of the vectors are encoded by coordinate gadgets
(CG), see Figure 3.4. Set δ := 1/100, and for  = 1, . . . , k − 1, let
CG(0) := 〈(−0.5− δ,0), (0.5,0), (−0.5− δ,0), . . . , (0.5,0), (−0.5− δ,0)〉
be a curve with 2k − 1 vertices. We define CG(1) as having the same
vertices asCG(0), except that the2-th vertex is replacedby (0.5+δ,0).
Further, we define

CGB(0) := 〈(−0.5,0), (0.5,0), (−0.5,0), . . . , (0.5,0), (−0.5,0)〉
with 2k − 1 vertices and CGB(1) in the same way, but with only 2k − 3
vertices. We call the vertices at (0.5,0) short spikes and the vertices
at (0.5 + δ,0) long spikes.

−0.5 − δ 0.5

k
−1

sp
ik
es

−0.5 − δ 0.5 0.5 + δ
CG(0) CG(1)

−0.5 0.5

k
−1

sp
ik
es

CGB(0)

k
−2

sp
ik
es

−0.5 0.5
CGB(1)

(long)
spike
i

Figure 3.4: Coordinate gadgets (distorted vertically for the purpose of illus-
tration).

Suppose that there were a coupling of CG1(1), CG2(1), . . . , CGk−1(1),
CGB(1) achieving a distance of at most 1. Then, we need to couple
each of the k − 1 long spikes of CG1(1),. . ., CGk−1(1) with a different
spike of CGB(1). But this is not possible since CGB(1) has only k − 2
spikes; thus, dF(CG1(1), . . . , CGB(1)) > 1. If we replace any CG∗(1)
with a respective curve CG∗(0), the distance becomes 1.

If CGB(0), then CGB(0) has k− 1 spikes and thus can accommodate all
long spikes; if CG(0), then there are at most k − 2 long spikes. These
can all be accommodated by CGB, and short spikes of the CG can sim-
ply be coupled with a (−0.5,0) on CGB.
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Next, we encode the vectors and the vector lists into the curves
A1, A2, . . . Ak−1 and B by concatenating the coordinate gadgets. The
construction is depicted in Figure 3.5.

For each coordinate of the vectors, we use the coordinate gadgets as
aforementioned. Between the coordinates of a vector, we use a point
c := (0,0.8661) to “synchronize” among the coordinate gadgets from
different vectors. The start of the vectors will be demarcated by A :=
(−0.499,−1) and B := (0,−0.8661). Additionally, we will use the
points tA = (0.48,−0.01) and tB = (0.57,1.005) to mark a successful
synchronized traversal, and s = (−0.499,0) as a point that is close to
all except tB, see Figure 3.5.

s

y

tA

BA

c

∈ CG∗

tB

∈ CG∗

Figure 3.5: The points used as vertices of the curves.

Two points are said to be close if their distance is at most 1: s is close
to all points except tB, and tA is close to all points except A. The point
c is close only to s and tA (and itself); tB is close only to tA and B, A is
close only to s and B; B only to s, tA and tB.

Now we can compose the curves A1, A2, . . . Ak−1 and B from the vec-
tors. We denote ◦ as the operation of adding a vertex to a curve or of
concatenating curves. Let Aj := s ◦ A ◦ ⃝d

h=1(CGj(α
j
[h]) ◦ c) ◦ tA be

the curve of the vector element αj
 . By concatenating the constructed

curves Aj, we set Aj :=
�⃝n

=1A
j


� ◦ s as the representation of the vec-

tor αj. Furthermore, we define B := B ◦ ⃝d
h=1(CGj(β[h]) ◦ c) and

B := s ◦ A ◦⃝n
=1B ◦ tB ◦ s similarly.



3

ProblemsonMultipleTrajectories 58

First, we argue that k vectors α11 , α
2
2
, . . . , αk−1

k−1 , βk are orthogonal if
and only if the corresponding concatenated coordinate gadgets have
Fréchet distance of at most 1. If the vectors are orthogonal, then in
each coordinate, at least one vector has a 0-entry, and a couplingwith
a distance of at most 1 is possible. On the other hand, if the vectors
are not orthogonal, there is one coordinate in which all vectors have
1-entries. The c vertices then force us to traverse all coordinates si-
multaneously so thatwewill have to couple k one-coordinategadgets,
yielding a Fréchet distance larger than 1.

Now let us consider the vector lists and the complete curves when
they are orthogonal. If the vector lists contain a k-tuple
α11 , α

2
2
, . . . , αk−1

k−1 , βk of orthogonal vectors, then the corresponding
curvesA1, . . . , Ak−1, Bhave a Fréchet distance of atmost 1. Wecanob-
serve this by the following coupling: first, A1 walks to the first point s
of A11 while all other curves wait at s. Then, A

2 walks to the first point
s of A22 while all other curves wait at s, etc. Finally, Bwalks to the first
point B of Bk while all other curves wait at s. Since s is close to all
points except for tB, the distance so far is 1. Then, the Aj curves simul-
taneously jump toAwhileBwaits atB, and subsequently the coordi-
nate gadgets are traversed simultaneously. Next, the Aj curveswait at
tA while Bwalks to the last point s. The Aj curves then simultaneously
move to thenext s, and finish the traversal to the final vertex one after
another while the other curves wait at s.

Next, suppose that the curves A1, . . . , Ak−1, B have a Fréchet distance
larger than 1. We argue then that there is a k-tuple of orthogonal
vectors. Indeed, suppose that no such k-tuple exists, and consider
the first time that B reaches tB. Since tB is close only to tA and B, at
this point, all Aj must be at tA. It follows that before that, all Aj’s must
have been simultaneously at A because on the construction of Aj’s,
A comes before tA, and A is close only to s and B. For the same
reason, at this point, B also must be at B. Thus, the coordinate gad-
gets of a k-tuple of vectors are traversed simultaneously, leading to a
Fréchet distance larger than 1 since all k-tuples are non-orthogonal.
Theorem 3.2 follows.
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Our construction also rules out a faster polynomial-time approxima-
tion scheme for the Fréchet distance on k curves unless SETH fails.
We computed the coordinates by hand, and they could be optimized
to prove a specific approximation lower bound.

3.6 Conclusions

By studying the computational complexity of specific analyses, we
surveyedmanycomputationalproblemson trajectorydata. This view
enabled us give insights for visual analytics systems intowhat kind of
analyses can be computed efficiently in terms of running time. By
reviewing existing lower bounds and proving new ones, we guide re-
searchers in their decision-making when to resort or to employ ap-
proximation algorithms or heuristics. We will now reflect on this
chapter’s application to the thesis as a whole.

Simplification of polygonal curves is applicable tomanydomains and
problems. Since new sensors collect data at higher sampling rates,
preprocessing of trajectory data becomes also pertinent to any analy-
ses on trajectories. However, little is known whether simplifications
can be computed in near-linear time. Our lower bound suggests that
this might be not the case at least in sufficient high dimensions. Lit-
tle is also known about how we can compute a simplification consis-
tently across many scales. In Chapter 4, we explore how to compute
simplifications progressively which has beenmotivated by the visual
information-seeking mantra [Shneiderman, 1996] from information
visualization. Furthermore, the lack of lower bounds prompted us to
explore new efficient representations for shortcut graphs that apply
toprogressiveaswell asnon-progressivesimplificationalgorithms.

For two trajectories, finding an alignment between long sequences in
near-quadratic time for all important similarity measures is very in-
volved. Furthermore, our lower bound on the Fréchet distance
amongmultiple curves and the lowerbound forLCSSbyAbboudet al.
[2015] suggest that finding an alignment amongmultiple individuals
is a challenging task. These insights led us to focus on small-scale
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datasets with a sampling rate, mimicking continuous movement, in
computing interaction events (see Chapter 5). We will also use a
dataset of three pigeons moving together to show how an alignment
can be constructed on a triplet.

Computing an optimal clustering for a variable state space is W[1]-
hard [Buchin et al., 2016]. Thus, to compute a clustering efficiently,
we are in need of approximation algorithms or heuristics. We there-
fore implemented a heuristic to compute a clustering, in this case an
aggregation of stopovers, for gull data in Chapter 6.
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4
Progressive Simplification

4.1 Introduction

Given a polygonal curve as input, the curve simplification problem
asks for a polygonal curve that approximates the input well and that
uses as few vertices as possible. Because of the importance of data
reduction, curve simplification has a wide range of applications. Car-
tography is one suchapplication inwhich thevisual representationof
line features like rivers, roads, or boundaries of regions needs to be
reduced. Nowadays, maps are interactive, so we need curve simplifi-
cation that works with different levels of details. The visual informa-
tion-seeking mantra [Shneiderman, 1996] states “Overview first,
zoomand filter, thendetails-on-demand”. Anaturalway to follow this
mantra would be to simplify for each zoom level independently. This
however would have the drawback that the resulting simplifications
would not be consistent among different scales. Therefore, we
requireprogressive simplification, that is, a series of simplifications
forwhich the levelofdetail isprogressively increased forhigherzoom
levels. This is shown in Figure 4.1a.

Existing progressive algorithms, e.g., [Cao et al., 2006], work by sim-
plifying a curve, then simplifying the previous simplification, and so
on. More concretely, a common approach is to first discard the ver-
tex, whose removal introduces the smallest error (according to some
criterion); then, we proceed by removing the vertex with the small-
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est error from the simplified curve and so on. For instance, the algo-
rithm by Visvalingam andWhyatt [1993] always removes the vertex,
that togetherwith its neighboring vertices forms the smallest area tri-
angle.

Such approaches stand in stark contrast to (non-progressive) curve
simplification algorithms, which aim to minimize the complexity of
thesimplificationwhileguaranteeinga (global) boundon theerror in-
troducedbysimplifying. Themostprominent algorithmwithaglobal
error bound is the algorithm by Douglas and Peucker [1973]. How-
ever, while heuristically aiming at a simplification with few vertices,
it does not actually minimize the number of vertices. Imai and Iri
[1988] introduced a general approach for the problem of minimizing
thenumber of vertices in a simplification. Their approachuses short-
cut graphs, whichwedescribe inmoredetail below. In linewith these
algorithms, the goal of our work is to develop algorithms that solve
progressive simplification as an optimization problem.

A (vertex-restricted) simplification S of a polygonal curve C is an or-
dered subsequence of C (denoted by S ⊆ C) that includes the first and
the last point of C. An ϵ-simplification S is a simplification that en-
sures that each edge of S has a distance of atmost ϵ to its correspond-
ing subsurve, wherein the distancemeasure can, for instance, be the
Hausdorff or the Fréchet distance [Alt and Godau, 1995]. For an or-
dered pair of points (p, pj) of C, we denote the distance between the
segment (p, pj) and the corresponding subchain by ϵ(p, pj). We de-
note by (p, pj) ∈ S that (p, pj) is an edge of S .

Wenowdefine theprogressivesimplificationproblem in theplane:
Definition 4.1. Given a polygonal curve C := 〈p1, p2, . . . , pn〉, where
each point p of C lies in the plane R2, and a sequence 〈ϵ1, . . . , ϵm〉,
where 0 < ϵ1 < ϵ2 < · · · < ϵm, we want to compute a sequence of
(vertex-restricted) simplifications S1,S2, . . . ,Sm such that

1. Sm ⊆ Sm−1 ⊆ · · · ⊆ S1 ⊆ C (monotonicity),
2. S is an ϵ-simplification of C, and
3.
∑m

=1 |S| is minimal.

We refer to a sequence of simplifications fulfilling the first two con-
ditions as progressive simplification. A minimal progressive sim-
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plification fulfills all three conditions, and theproblemof computing
sucha sequence is called theprogressive simplificationproblem. In
this chapter, we present an O(n3m)-time algorithm for the progres-
sive simplification problem in the plane.

The cornerstone of progressive simplification is that we require
monotonicity (see 1. in Definition 4.1) between simplifications of dif-
ferent scales: S ⊆ S−1, as illustrated in Figure 4.1a. This guarantees
that, when “zooming out”, only vertices are removed and cannot
(re)appear. As an error measure, we will mostly use the Hausdorff
distance [Hausdorff, 1914]. This is not essential to the core algorithm,
and we will discuss how to use the Fréchet distance [Alt and Godau,
1995] or area-based measures [Daneshpajouh et al., 2012] without af-
fecting the worst-case running time. Furthermore, our algorithm
generalizes to the weighted version of the problem in which∑m

=1|S| with positive weights  is minimized, and to the continu-
ous version, where Sϵ needs to be computed for all 0 ≤ ϵ < ϵM wherein
ϵM is the error at which we can simplify the curve by the single line
segment (p1, pn); thus, we have ϵM = ϵ(p1, pn). As in the discrete set-
ting, we require Sϵ′ ⊆ Sϵ for ϵ′ > ϵ; the resulting algorithmminimizes∫ ϵM
0 |Sϵ|dϵ in O(n5) time.

In our algorithms, we will make use of the shortcut graph as intro-
duced by Imai and Iri [1988]. Given a polygonal curve C, a shortcut
is an ordered pair ( < j) of vertices. Given an error ϵ > 0, a shortcut
(p, pj) is valid if ϵ(p, pj) ≤ ϵ. The shortcut graph G(C, ϵ), as shown in
Figure 4.1b, represents all valid shortcuts (p, pj) with 1 ≤  < j ≤ n.
A bottleneck in computing (progressive) simplifications is the con-
struction and space usage of these graphs. We therefore devise sev-

S2 ⊆ S1

S1 ⊆ C

C

(a)

S

G(C, ϵ)

C

(b)

Figure 4.1: Examples for (a) progressive and (b) global curve simplification.
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eral new techniques for computing these graphs more efficiently
with respect to timeandspace. These techniquesapply toprogressive
simplifications as well as (non-progressive)min-# simplifications. A
min-# simplification algorithmminimizes the number of vertices in
a simplification for a given ϵ.

First, we present an algorithm that efficiently constructs shortcut
graphs independently of an error ϵ, which makes computations on
different scalesmoreefficient aswell. Todate, it hasbeenknownonly
how to compute shortcut graphs in subcubic time if anerror ϵ is given
upfront. We show how ϵ(p, pj) can be computed for an arbitrary line
segment (p, pj)without fixing an error in advance by employing con-
vex hulls in the computation of the graph. This construction is also of
interest formin-ϵ simplification, inwhich ϵneeds to beminimized for
a given bound on the number of points in the simplification.

Secondly, we introduce a representation of the shortcut graph that
employs so-called shortcut intervals. Shortcut graphs are computed
to perform shortest path calculations, and as we will later argue and
demonstrate in an experimental evaluation, computing shortest
paths using shortcut intervals typically takes only O(n logn) time.
This result tends to be more generally applicable for min-# simplifi-
cations. In our experiments, we compare our minimal progressive
simplification algorithmwith several natural heuristics and evaluate
our techniques for shortcut graphs.

4.2 Related Approaches

Curve simplification is a well-studied problem in the past 30 years
due to its importance to applications in various domains. We survey
themost-related previous results on this problem.

Imai and Iri [1988] introducedageneral approach tomin-# simplifica-
tion using the shortcut graph, and they provided corresponding algo-
rithms. Similaralgorithmswerepresented inaseriesofpapers [Melk-
man and O’Rourke, 1988; Toussaint, 1985], resulting in algorithms
with a running time of O(n2) for min-# simplifications, and with a
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running time of O(n2 logn) for min-ϵ simplifications [Chan and Chin,
1996] under the Hausdorff distance. These algorithms are based on
computing the shortcut graph for a specific error and then using bi-
nary search for themin-ϵ problem.

For the L1-metric, Agarwal and Varadarajan [2000] presented an
O(n4/3+ϵ)-time algorithm. For this, they use a clique-cover represen-
tation for theshortcutgraph. Agarwaletal. [2005]devisedagreedyap-
proximation algorithm that runs in O(n logn) time which given ϵ > 0
guarantees that it does not have more vertices than an optimal ϵ/2-
simplification.

Applications often use heuristics, in particular the Douglas-Peucker
simplification [Douglas and Peucker, 1973]. The output of this algo-
rithmisneitheramin-# simplification, noramin-ϵ simplification, nor
is the algorithm progressive.

Progressive simplifications are used in cartography [Qingsheng et al.,
2002]. Apopular progressive algorithm is theonebyVisvalingamand
Whyatt [1993] that always removes the point in a series of simplifi-
cations, that is part of the triangle with the smallest area. Inspired
by this, Daneshpajouh et al. [2012] defined an error measure for non-
progressive simplification bymeasuring the sumor the difference in
area between a simplification and the input curve. Cao et al. [2006]
referred to progressive curve simplification as “aging”. They devel-
oped a heuristic to this problem by iteratively simplifying previously
computed simplifications instead of the input curve.

4.3 Computing Simplifications Progressively

Wewill showhow to solve the progressive simplification problem for
curves in the plane in O(n3m) time in Section 4.3.1. The same run-
ning timeholds for theweightedversion, andbasedon this factweare
able to show that the continuous progressive simplification problem
can be solved in O(n5) time. Our proofs apply to polygonal curves in
higher dimensions. As faster alternatives, we discuss greedy heuris-
tics inSection4.3.2,whichweevaluateexperimentally inSection5.5.
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4.3.1 Optimal Progressive Simplifications

By the monotonicity property of the progressive simplification prob-
lem (see 1. in Definition 4.1), we require that all points within a sim-
plification Sk of the sequence must also occur within all subsequent
simplifications S with k < . Adding points to a simplification thus is
a crucial step as well as maintaining shortcuts. We, therefore, asso-
ciate a cost value ckj ∈ N for each shortcut (p, pj) in the shortcut graph
G(C, ϵk) of a simplification Sk . In Sections 4.4 and 5.5, we use theHaus-
dorff distance as an error measure to determine whether a shortcut
is valid, but because the shortcut graph is flexible in using any error
measure, we can employ any other distance measure for our algo-
rithms. In particular, for the Fréchet distance [Alt and Godau, 1995]
and area-based distances [Daneshpajouh et al., 2012], we can simply
compute whether a shortcut is valid in O(n) time and therefore use
these measures without changing the worst-case running time. We
obtain a cost value ckj for a shortcut (p, pj) ∈ G(C, ϵk) by minimizing
the costs of all possible shortcuts in 〈p, . . . , pj〉 at lower scales recur-
sively. The dynamic program is defined as follows:

ckj =


1 if k = 1

1 + min
π∈∏k−1(p,pj)

∑
(p,py)∈π

ck−1y if 1 < k ≤m

We use
∏k(p, pj) to denote the set of all paths in G(C, ϵk) from p to

pj.

We compute all cost values from scale k = 1 up to m by assigning a
weight ckj to eachshortcut (p, pj) ∈ G(C, ϵk). Foreachshortcut (p, pj) ∈
G(C, ϵk), we compute ckj by finding a shortest path π in G(C, ϵk−1) from
p to pj, minimizing

∑
(p,py)∈π ck−1y thereby.

We can use any shortest path algorithm. We opted to employ Dijk-
stra’s algorithm that we need to run per scale k on O(n) source nodes
of G(C, ϵk). This yields a worst case running time of O(n3m) because
thisalgorithmtakes inO(n2) timeongraphswith integerweights.
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We increment ckj = ck−1j + 1 for any shortcut (p, pj) ∈ G(C, ϵk−1). By
doing so, we avoid recomputations of shortest paths and reuse cost
values whenever necessary.

We construct the sequence of simplifications from Sm down to S1.
First, we compute Sm by returning the shortest path from p1 to pn in
G(C, ϵm) using the computed cost values at scalem. Next, we compute
a shortest path P fromp topj inG(C, ϵm−1) for all shortcuts (p, pj) ∈ Sm.
Simplification Sm−1 is then constructed by linking these paths Pwith
each other. We build all other simplifications in thismanner until S1
is constructed.

Correctness

We will now prove that this algorithm returns a valid and minimal
solution for the progressive simplification problem.

By constructing the simplifications from scalem down to 1, it follows
that, for any shortcut (p, pj) ∈ Sk with 1 < k ≤ m, there exists a sub-
sequence 〈p, . . . , pj〉 ⊆ Sk−1. We therefore have Sk ⊆ Sk−1. Further-
more, each simplification Sk has a maximum Hausdorff distance ϵk
to C since we link only edges from G(C, ϵk).

It remains to show that we minimize
∑m

=1 |S|. We therefore define a

set of shortcuts S jk for any 1 ≤  < j ≤ n and 1 ≤ k ≤m as:

S jk = { (p, py) ∈ Sk |  ≤  < j ≤ y }.

Thus, S jk includes all line segments of Sk that span the subcurve

〈p, . . . , pj〉 with an error of at most ϵk to C. |Sjk | then is the number of
shortcuts in simplification Sk covering (p, pj).
Lemma4.1. If the linesegment (p, pj) is partof simplificationSk, then
the associated cost value ckj satisfies c

k
j =
∑k

ℓ=1 |S jℓ | for any 1 ≤ k ≤ m
and 1 ≤  < j ≤ n.
Proof. We show ckj =

∑k
ℓ=1 |S jℓ | by induction on k using the following

inductive hypothesis: for any n ≥ y >  ≥ 1, if (p, py) ∈ Sk, then cky =∑k
ℓ=1 |Syℓ | (IH).
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Base k = 1: Take any shortcut (p, pj) ∈ S1. We therefore observe that
(p, pj) ∈ G(C, ϵ1). Furthermore, we know S j1 = {(p, pj)}, and therefore

|S j1 | = 1. This yields c1j = 1 =
∑k

ℓ=1 1 =
∑k

ℓ=1 |S j1 |.

Step k > 1: Take any line segment (p, pj) ∈ Sk+1. Thus, we observe
(p, pj) ∈ G(C, ϵk+1), S jk+1 = {(p, pj)}, and |S jk+1| = 1.
Consider any 1 ≤ ℓ ≤ k and a path π ∈ ∏k(p, pj) such that∑
(p,py)∈π |Syℓ | is minimal. We now derive that π = S jℓ such that Syℓ

is minimal for all (p, py) ∈ π. Note that π = S jℓ ⊆ G(C, ϵℓ) ⊆ G(C, ϵk)
since ϵk ≥ ϵℓ. We observe that π is both in

∏ℓ(p, pj) and∏k(p, pj). It
thus follows that:

min
π∈∏k(p,pj)
∑

(p,py)∈π
|Syℓ | = min

π∈∏ℓ(p,pj)
∑

(p,py)∈π
|Syℓ |. (4.1)

From π = S jℓ , it follows that S
y
ℓ ∩ Syzℓ = ∅ for any (p, py) and (py, pz)

in π. Combining Syℓ for all (p, py) ∈ π yields a non-overlapping se-
quence of shortcuts from p to pj. This gives us:

|S jℓ | = min
π∈∏ℓ(p,pj)
∑

(p,py)∈π
|Syℓ |. (4.2)

We now derive the following:

ck+1j

(IH)
= 1 + min

π∈∏k(p,pj)
∑

(p,py)∈π

k∑
ℓ=1

|Syℓ | (4.1)= 1 +
k∑

ℓ=1

min
π∈∏ℓ(p,pj)
∑

(p,py)∈π
|Syℓ |

(4.2)
= 1 +

k∑
ℓ=1

|S jℓ |
|S j

k+1 |={(p,pj)}=
k+1∑
ℓ=1

|S jℓ |

Theorem4.1. Given a polygonal curve with n points in the plane and
0 ≤ ϵ1 < . . . < ϵm, a minimal progressive simplification can be com-
puted inO(n3m) time under distancemeasures for which the validity
of a shortcut canbecomputed inO(n) time. This includes theFréchet,
Hausdorff, and area-basedmeasures.



4

ComputingSimplificationsProgressively 69

Proof. It remains to be proven that the combined size of the simplifi-
cations computed by our algorithm is minimal. Let 〈S′1, . . . ,S′m〉 be a
sequence of simplifications of a minimal progressive simplification,
and let 〈S1, . . . ,Sm〉 be the sequence computed by the algorithm. We
need to prove that

∑m
ℓ=1 |Sℓ| ≤
∑m

ℓ=1 |S′ℓ | holds.
Let us derive the following:

min
π∈∏m(p1,pn)

∑
(p,py)∈π

cmy
Lemma 4.1
= min

π∈∏m(p1,pn)
∑

(p,py)∈π

m∑
ℓ=1

|Syℓ |

(4.1)
=

m∑
ℓ=1

min
π∈∏ℓ(p1,pn)

∑
(p,py)∈π

|Syℓ | (4.2)=
m∑
ℓ=1

|Sℓ|.

Hence, the algorithm produces a simplification that minimizes the
overall cost function; ouralgorithmproducesaprogressive set of sim-
plifications in which each simplification consists of edges from the
corresponding shortcut graph such that the cumulative number of
vertices isminimized. We also know that anyminimal simplification
S′k is a path in G(C, ϵk) since it strictly connects shortcuts with an er-
ror of at most ϵk . We conclude from this that

∑m
ℓ=1 |Sℓ| ≤
∑m

ℓ=1 |S′ℓ |
holds.

We now consider two variants of the progressive simplification prob-
lem: theweighted progressive simplification for which the objective
is to minimize the weighted cumulative size of the simplifications;
and the continuous progressive simplification. They are formally de-
fined as follows:
Definition 4.2 (Weighted Progressive Simplification). Given a polyg-
onal curve C := 〈p1, p2, . . . , pn〉, where each point p of C lies in the
plane, a sequence 〈ϵ1, . . . , ϵm〉, where 0 ≤ ϵ1 < ϵ2 < · · · < ϵm, and a se-
quenceof correspondingweights1,2, . . . ,m, whereeachj ∈ R+ ,
we want to compute a sequence of (vertex-restricted) simplifications
S1,S2, . . . ,Sm of C such that

1. Sm ⊆ Sm−1 ⊆ · · · ⊆ S1 ⊆ C (monotonicity),
2. S is an ϵ-simplification of C, and
3.
∑m

=1|S| is minimal.
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Definition 4.3 (Continuous Progressive Simplification). Given a
polygonal curve C := 〈p1, p2, . . . , pn〉, where each point p of C lies in
the plane and a we want to compute a sequence S1,S2, . . . ,Sm with
〈ϵ1, . . . , ϵm〉, where ϵm is the error at which we can simplify C to the
line segment (p1, pn) and 0 ≤ ϵ1 < ϵ2 < · · · < ϵm, such that

1. Sm ⊆ Sm−1 ⊆ · · · ⊆ S1 ⊆ C (monotonicity),
2. S is an ϵ-simplification of C, and
3.
∫m
0 |S|dϵ is minimal.

For both of these problems, we can employ our preceding algorithm
to compute simplifications progressively. We first showhow to adapt
our algorithm for the weighted progressive simplification problem;
thenweprovehowtosolve thecontinuoussimplificationproblem.

Recall that in the weighted progressive simplification problem, we
are additionally given weights 1, . . . ,m and need to minimize∑m

ℓ=1ℓ|Sℓ| (seeDefinition4.3). Weachieve thisbyadapting thedefini-
tionof ckj : Foreachshortcut (p, pj) inG(C, ϵ1), wehaveacostof c

1
j =1

instead of 1; furthermore, ckj =k +minπ∈∏k−1(p,pj)∑(p,py)∈π ck−1y , for
each (p, pj) inG(C, ϵk)where k > 1. Note that the proofs above are triv-
ially extended to apply to this updated cost function. The weighted
progressive simplification allows us to solve the continuous progres-
sivesimplificationproblem. Wenowshowthe followingTheorem:
Theorem 4.2. Given a polygonal curve with n points in the plane, a
minimal continuous progressive simplification can be computed in
O(n5) time under distancemeasures for which the validity of a short-
cut can be computed in O(n) time. This includes the Fréchet, Haus-
dorff, and area-basedmeasures.

Proof. Consider the maximal errors ϵ(p, pj) of all possible line seg-
ments (p, pj) with  < j with respect to the Hausdorff distance (or an-
other distance measure). Then let E := 〈ϵ1, . . . , ϵ(n2)〉 be the sorted se-
quence of these errors based on their value. Let M be the index of
the corresponding ϵM in this sorted sequence E for the line segment
(p1, pn); thus, ϵM = ϵ(p1, pn). Note that it is possible that M <

�n
2

�
, but

there is no reason to use any ϵ > ϵM since at this pointwe alreadyhave
simplified the curve to a single line segment, (p1, pn).
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In a minimal-size progressive simplification, it holds that Sϵ = Sϵ for
all ϵ ∈ [ϵ, ϵ+1). This can be shown by contradiction: if Sϵ would be
smaller, we could decrease the overall size by setting all Sϵ′ with ϵ′ ∈
[ϵ, ϵ] to Sϵ. Therefore, in a minimal continuous progressive simplifi-
cation we have ∫ ϵM

0
|Sϵ|dϵ =

M−1∑
k=1

(ϵk+1 − ϵk)|Sϵk |.

Thus, we can solve the continuous progressive simplification prob-
lem by reducing it to the weighted progressive simplification prob-
lemwith O(n2) values ϵk .

4.3.2 Greedy Heuristics

Ideally, we would like to be able to browse between simplifications of
different scales in any direction. To accomplish this, we need an effi-
cient way to compute not only from scale 1 up tom, which we define
as bottom-up ordering, but also from scalem down to 1, which we re-
fer to as top-down ordering.

Greedy approaches for simplification have helped in the past to con-
struct efficient approximation algorithms [Agarwal et al., 2005] and
heuristics [Caoetal., 2006] for (non-progressive) curvesimplification.
By ignoring all costs, we can reuse our optimal algorithm top-down
and greedily. For a bottom-up construction, we just need to ensure
that we reuse points from the previous scale.

Due to the greedy choice and themonotonicity constraint within the
progressive simplification,many potential shortcuts are pruned. We
integrate a new pruning technique into the efficient shortcut graph
construction byChan andChin [1996]. When constructing a simplifi-
cation top-down progressively, we want to obtain all shortcuts
(p, pj) ∈ G(C, ϵk)where  ≤  < j ≤ y for some (p, py) ∈ Sk+1. Similarly,
for constructing simplifications progressively bottom-up, we prune
the search space to all shortcuts (p, pj) ∈ G(C, ϵk)where (p, pj) ∈ Sk−1.
A bottom-up construction prunes more drastically than a top-down
construction by excluding particular points.
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Cao et al. [2006] devised an efficient heuristic for simplifying polyg-
onal curves progressively from a finer to a coarser scale. Instead of
pruning graph G(C, ϵk) progressively, they construct a simplification
Sk for scale ϵk by computing it on G(Sk−1, ϵk). Thereby, the simplifi-
cations cascade recursively, whichmeans that any guarantees on the
error of these simplifications with respect to C are lost. We therefore
obtain anewbound

∑k
ℓ=1 ϵℓ on theerror betweenSk and C. Thisheuris-

tic works with anymin-# simplification.

4.4 Constructing the Shortcut Graph for Arbitrary
Scale

In this section, we present a novel algorithm to compute the
maximum error ϵ(p, pj) for any ordered ( < j) pair (p, pj) with re-
spect to the Hausdorff distance (or any other distance measure) in
O(n2 logn) time instead of O(n3) time [Chan and Chin, 1996]. This
technique can be applied to both non-progressive simplification al-
gorithms and progressive simplification algorithms to speed up the
computation of the maximum error ϵ(p, pj) of any line segment
(p, pj)with  < j.

Cao et al. [2006] showed experimentally that the shortcut computa-
tion by Chan and Chin [1996] is fastest for the Euclidean distance.
This shortcut representation, however, requires fixing an error value
in advance. To facilitate the construction of shortcut graphs for var-
ious error criteria, we are interested in computing the maximum er-
ror ϵ(p, pj) between any shortcut (p, pj) and its induced subcurve
〈p, . . . , pj〉. This allows us to efficiently determine for any given error
bound whether a shortcut is valid or not. This is particularly useful
for continuous progressive simplification, for which we would other-
wise need to compute a quadratic number of shortcut graphs, thus
spending O(n4) time on computing shortcut graphs.

We can easily compute such a shortcut graph by annotating each
edge (p, pj) with its maximum error ϵ(p, pj). This would take O(n3)
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time if we compute ϵ(p, pj) for each edge separately. In this section,
we discuss how this can be improved to O(n2 logn).

For a given p ∈ C, we construct a convex hull CH = 〈q1, . . . , qℓ〉 where
CH ⊆ C in which we incrementally insert all points pj where  ≤ j ≤
n. After inserting a point pj, we find the extreme points Xj

t and Xj
b on

CH using the upwardnormal n⃗j and downwardnormal−n⃗j of the line
segment (p, pj). An extreme point on CH in the direction of a vector
n⃗ is any point  ∈ CH such that there cannot be a point y ∈ CH with
n⃗ · (y⃗ − ⃗) > 0. See Figure 4.2a for an example.

p pj

−n⃗j

n⃗j

Xj
t

Xj
b

(a)

p

pj

L R

T

B

Xj
t

Xj
b

Xj
 Xj

r

(b)

Figure 4.2: The convex hull of 〈p, . . . , pj〉. (a) Extreme points Xjt and Xjb with
respect to (p, pj). (b) Division of the convex hull into regions
L, R, T and B.

The two extreme points on the convex hull for line segment (p, pj)
donot always yield the furthest point on the corresponding subcurve.
An example of this is shown in Figure 4.2b. To resolve this, we need to
subdivide the area around (p, pj) into four regions: T(op), B(ottom),
L(eft), andR(ight). Themaximumerror value of shortcut (p, pj) is the
maximumdistance fromthe furthestpoint ineachregion to (p, pj).

For region T, we compute the furthest point Xj
t by finding an extreme

point in the upper convex hull CHt . The furthest point Xj
b within re-

gion B for the lower convex hull CHb is computed analogously. Both
convexhulls are representedasbalancedbinary search treesordered
x-monotonically. We obtain Xj

t and Xj
b by a binary search on the nor-

mals of the line segments of CHt and CHb respectively.

By obtaining candidates Xj
t and Xj

b on CHt and CHb respectively, we

compute Xj
 . We continue our discussion for computing Xj

t on CHt,
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which is analogous to obtaining Xj
b on CHb.

To compute Xj
t, we annotate each root node pr of a subtree Tr ∈ CHt

with the furthest point in Tr to p. The root of the binary search tree is
therefore annotated with the point in CHt furthest from p. An exam-
ple of such a tree annotation is shown in Figure 4.3.

p

pjq1

q2

q3 q4 = Xj
t

q6

4

5

6

3

2

1

L

q1

q3

q6

q6

q5q3

q5

Figure 4.3: Annotating the binary search tree of the convex hull CHt to find
Xjt.

We employ range queries to isolate subtrees which lie completely
inside L. To isolate those subtrees, we traverse the search tree and
check for every subtree whether the left-most and right-most point
contained in the subtree are inside L. In this case, then by the convex-
ity of thehull, the entire subtree lies inside L. This thenmeanswecan
consider its annotation as a candidate for Xj

t.

To determine Xj
r , we cannot reuse this approach since p is the first

point added to the convex hull and pj the last. Therefore, we need to
run the annotation algorithm on the reversed sequence of C as well,
similarly to Chan and Chin [1996]. During the forward traversal, we
compute Xj

t , X
j
b and Xj

 incrementally; during the backward traversal,

we obtain Xj
r .

4.5 Compressing the Shortcut Graph

For many types of spatial data, such as movement trajectories with
a high sampling rate, consecutive points p and pj are expected to be
spatially close. We therefore presume that, if (p, p) is a valid short-
cut for some point p, then (p, pj)might be a shortcut too. This ob-
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servation inspired us to exploit so-called shortcut intervals, which
are contiguous subsequences of Cwithwhichaparticular point forms
shortcuts. By employing a set of shortcut intervals, we can typically
find a shortest path for an arbitrary pair of points inO(n logn) time in-
stead of O(n2). A similar approach has been used by Alewijnse et al.
[2014] to speed up trajectory segmentation. Our new shortcut rep-
resentations can be used with any simplification algorithm that uses
shortcut graphs.

4.5.1 Shortcut Graph Construction

Wepropose a novel representation of a shortcut graph called a short-
cut interval set. It is a minimally sized set of shortcut intervals cov-
ering all shortcuts: (C, ϵ) = 〈1(ϵ), . . . , n(ϵ)〉 in which (ϵ) is a set of
shortcut intervals starting in p. Formally, any shortcut interval for
a point p and tolerance value ϵ is a maximal interval [, y] where all
shortcuts from p to pj for  ≤ j ≤ y are valid for ϵ.

(a) (C, ϵ1) (b) (C, ϵ2) (c) (C, ϵ3) (d) (C, ϵ4)

Figure 4.4: Shortcut intervals sets of a polygonal curve for four different
error criteria.

In Figure 4.4, we show a shortcut interval set as amatrix; the shading
of a cell (, j) with 1 ≤ , j ≤ n indicates whether (p, pj) is a valid short-
cut. Observe that independent of the tolerance value ϵ, every column
or rowwithin thematrix has only a few shaded regions. Hence, we ex-
pect |(ϵ)| to be of constant size in practice, so (C, ϵ) has linear space
complexity in experimental settings. This representation is thus typ-
ically an order ofmagnitude smaller than explicitly storing the short-
cut graph G(C, ϵ).
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To handle degenerated cases, Chan and Chin [1996] used in their al-
gorithm to compute shortcut graphs efficiently inO(n2) time two sets
of shortcuts. After computing them, they intersected these sets to ob-
tain the shortcut graph. Since both have sizes of O(n2) in the worst
case, computing such an intersection takes O(n2). We can speed up
this computation of the intersection of these sets by not representing
them explicitly but by employing shortcut intervals instead. Given
the two shortcut interval sets ′(C, ϵ) and ′′(C, ϵ), we want to compute
the intersectionbyobtaining an interval set ′(C, ϵ) such that each (ϵ)
contains the overlap of the intervals in ′ (ϵ)with the intervals of ′′ (ϵ).
An example of such an intersection is shown in Figure 4.5a. We can
compute thisefficiently inO(n) timebysweepingover theshortcut in-
tervals of both sets ′ (ϵ) and ′′ (ϵ) simultaneously,wherein computing
each encountered overlap takes O(1) time. Since each set contains
typically O(n) shortcut intervals, this operation runs in O(n) time in
practice.

′ (ϵ)

′′ (ϵ)

(ϵ)

(a)

(ϵ)

(b)

Figure 4.5: Exploiting shortcut intervals. (a) Intersecting ′(C, ϵ) and ′′(C, ϵ)
to obtain (C, ϵ). (b) Finding the shortest path from p to pt by
performing multiple range queries on T for each interval in (ϵ).

4.5.2 Finding Shortest Paths

To compute a simplification as a shortest path from some point ps
to another point pt, we can use breadth-first search in O(n2) time in
unweighted shortcut graphs. By using shortcut intervals, we can im-
prove the running time to O(n logn) in practice. Our construction of
shortest paths canbe employed in any simplification algorithm.
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First, we construct a balanced binary search tree T containing all
points 〈ps, . . . , pt〉 ordered by their indices. Suppose we have a sub-
tree Tr rooted at pr ∈ T; our objective is to annotate pr with the short-
est path from pr to pt as well as the shortest path from any point in Tr
to pt . Hence, every node and subtree in T has an annotation.

Next, we annotate T by inserting all points from pt down to ps. We
annotate each node p by the result of a range query on T for every
shortcut interval in (ϵ). A range query for a shortcut interval [, y] ∈
(ϵ) isolates all subtrees for which (p, pj) is a valid shortcut, pj ∈ T
and  ≤ j ≤ y. We can then determine the shortest path from a point
p to pt by retrieving the subtree annotations. See Figure 4.5b for an
example. After inserting all points, we return the annotation of node
ps which is the shortest path from ps to pt .

Depending on the input curve and the error value, we presume that
|(ϵ)| is typically of size O(1) for an arbitrary point p. There are cases
when the shortcut intervals in (ϵ) cover a small number of points. In
such a case, a shortcut interval is so small that performing the range
query ismore time-consuming than simply checking the node anno-
tation of all points of that interval. There are O(n2) intervals in the
worst case, yielding aworst-case running time ofO(n2 logn), which is
slower than breath-first search in O(n2) time.

Therefore, we compute the shortest path for shortcut intervals [, y]
where y− < c logn for someconstant c ∈ R+ bybrute force inO(y−)
time. By doing so, we obtain a worst-case running time of O(n2) for
thismethod.

4.6 Experimental Evaluation

Weexperimentallyevaluatedvarioussimplificationalgorithms in the
progressive setting and on different shortcut representations. Our
motivation for studying this problem was the visualization of trajec-
tories at varying scales, and so we used trajectory data from amigrat-
ing griffon vulture [Schmidt-Rothmund, 2017] to evaluate our algo-
rithms.
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This trajectory has high granularity and spans a large distance, mak-
ing it highly suitable for progressive simplification. We conducted
our experiments on a 64-bit Intel Core i7-2630QMmachine with 8 gi-
gabytes of DDR3 SDRAM. All code was written in C# 6.0.

We ran our progressive simplification algorithmon a sample of 5000
points and on ten scales. The associated error criteria are sampled
linearly from the 10% smallest errors of shortcuts on that input. All
shortcut graphs are constructed using the algorithm by
Chan and Chin [1996] and represented as shortcut interval sets. We
used Dijkstra’s algorithm and employed pairing heaps as priority
queues [Fredman et al., 1986] in our progressive simplification algo-
rithm.

Theminimal progressive simplification algorithm (II Opt.), depicted
in red in Figure 4.6a, has a similar cumulative simplification size as
theminimal simplification inanon-progressivesimplificationsetting
(II NoHier.). Because greedy choices at earlier (coarser) scales prop-
agate errors on the construction of simplifications at finer scales, the
cumulative size of the progressive simplification for a top-down or-
dering (II TD) is significantly larger than for anyother algorithm. The
bottom-up construction (II BU) shows better performance because it
startswith the least aggressivegreedychoicewhilepruning the short-
cut graph the most. II BU Naive is the approximate version of II BU
in which we progressively simplify previous simplifications instead
of using C (see [Cao et al., 2006] and Section 4.3.2). This algorithmout-
performs all other Imai and Iri [1988] algorithms in terms of the cu-
mulative sizeof the simplificationand the running time. TheDouglas-
Peucker simplification (DP) [Douglas and Peucker, 1973] has the fast-
est running time for any length of the input curve (Figure 4.6b), but
has larger simplification sizes.

We wanted to explore which shortcut graph construction algorithm
facilitatessimplifyingcurvesonmanyscales, sowecompared therun-
ning time of constructing a shortcut graph using convex hulls with
the construction fromChan and Chin [1996] for a varying ϵ. We eval-
uatedhowsensitiveaconstructionalgorithmfor theshortcutgraph is
with respect tomultiple scales. Toperformrangequerieson theanno-
tated convex hulls, we used left-leaning red-black trees [Sedgewick,
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(a)

(b)

Figure 4.6: Performance of progressive simplification algorithms on 10% of
the smallest errors using 10 scales. (a) Comparison of the cu-
mulative simplification size for 5000 points. (b) Running time in
seconds on a log-scale with respect to the length of the input
curve.

2008]. Employing convex hulls involves precomputation costs for
building them; for a few scales, this can take up to 10 minutes (see
Figure 4.7a). However, these computational costs for building convex
hulls amortize for more than 65 scales which is when our construc-
tionstarts tooutperformthealgorithmbyChanandChin [1996].

Finally, we investigated the link between time and space complexity
when representing shortcut graphs using shortcut intervals. We ob-
served that constructing shortcut interval sets has a near-linear run-
ning time for varying lengths of the input curve; whereas, construct-
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(a)

(b)

Figure 4.7: Running times for constructing the shortcut graph. (a) Con-
structing different types of shortcut graphs on 5000 points. (b)
Comparison of the shortcut interval sets to explicit shortcut
graphs for varying lengths of the input curve. We construct short-
cut graphs with the smallest 10% of errors on the input curve.

ing shortcut graphs explicitly shows a running time that is aboveO(n)
(seeFigure4.7b). Forvarying ϵ, ourexperiments suggest that shortcut
intervalsuse linear storage, as opposed to superlinear spacecomplex-
ity that the representation by Imai and Iri [1988] uses (Figure 4.8a).
Our experiments indicate a linear running time for range queries on
shortcut interval sets (seeFigure4.8b),which isdrastically faster than
running a quadratic-time breadth-first search (BFS).
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(a)

(b)

Figure 4.8: Results for exploiting shortcut intervals for error criterion ϵ =
0.06 and varying lengths of the input curve. (a) Comparing the
space complexity between using explicit shortcut graphs versus
shortcut interval sets. (b) Running time comparison of finding
a shortest path from the start to the end of the curve, using
breadth-first search (BFS) or range queries on shortcut interval
sets.

4.7 Conclusions

Wehavepresented the first algorithmthat computesminimum-com-
plexity progressive simplifications given a polygonal curve with n
points in the plane. Our algorithm runs inO(n3m) time form discrete
scales and O(n5) time for continuous scaling. To facilitate progres-
sive simplifications on many scales, we present a technique for effi-
ciently computing the maximum error for every potential shortcut
on C in O(n2 logn) time. This technique facilitates computing both
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non-progressive simplifications andprogressive simplifications. Fur-
thermore, we developed a storage-efficient representation for the
shortcut graph that is capable of finding shortest paths in O(n logn)
time,which isalsoapplicable toanysimplificationalgorithmthatuses
a shortcut graph.

Our experimental evaluation shows that our progressive algorithm is
effective, yet too slow for larger trajectory data. As a future work, it
would be interesting to improve theworst-case running time for both
the discrete and the continuous case. Our experiments further indi-
cate that greedy heuristics that simplify bottom-up provide a reason-
able alternative in practice.

In general, it would be interesting to develop a near-linear time sim-
plification algorithm, which might be of benefit to compute progres-
sive simplifications faster. Our results inChapter3.3.2 suggest thatwe
depend on new approximation algorithms and heuristics for the sim-
plification problem to accomplish this because it might not be possi-
ble to compute an optimal simplification in subquadratic time.

Finally, the experiments show that our new representations of the
shortcutgraphareefficientboth incomputing theerror ϵ forall edges
and in computing shortest paths. It would be of interest to compute
shortcut intervals faster because this wouldmake themin-# simplifi-
cationmore viable for large data.
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5
Visual Analytics of Delays

and Interaction

5.1 Introduction

In a wide range of applications, such as biology, urban planning,
sports, or ecology, movement data are being collected in the form
of trajectories. In recent years, technological advances have led to
a rapid improvement in the ability to record trajectory data [Nathan
and Giuggioli, 2013]. New technology allows scientists to collect data
of high resolution, over long durations, and for a large number of si-
multaneously moving entities. Coupled with methodological
advancements, movement data offer an opportunity to better under-
stand themechanisms and behavioral ecology guiding collectivemo-
tion. In order to explore such data interactively, this research inte-
grates interaction and delayed responses onmovement data in a new
visual analytics tool.

Interaction is the inter-dependency in the movements of two trajec-
tories [Doncaster, 1990]. Thecomputationof interactionevents ismo-
tivated byunderstanding combinedmovements of separation, attrac-
tion, andmutual repulsion that occurs betweenmoving objects. One
way to identify interaction involves computinganalignmentbetween
the trajectories. Within an alignment, any point of one moving ob-
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ject is mapped to either a point or a range of points from the other
moving object. We are interested in exploring delayed responses in
the movement over time, where one moving object moves in a new
direction, an action pattern, and this is followed by an adaption of an-
othermoving object, a reaction pattern. To capture such patterns, we
need so-called interaction measures, which are similarity measures
adapted tocover aspects of interaction. Anexampleof suchanaction-
reaction pattern is depicted in Figure 5.1.

decreasing
interaction

adjusted action reaction
0

0

edges of thematching
start end

Figure 5.1: A sketch for an action-reaction pattern in an overlayed distance
and delay plot. The progression of the delay is depicted as a dot-
ted line, and the distances as a black line. At first, the interaction
decreases to an adjusted level. An action then results in a peak
of the distances, where one trajectory moves in a new direction.
The delay increases rapidly at this point, and the delay reaches
its maximum at the beginning of the reaction phase. The reac-
tion of the other trajectory results in a shrinking of the distances
again. After having reached its maximum, the delay decreases
accordingly. Finally, a new adjusted level is reached until a new
action invokes another action-reaction pattern.

Delay is the temporal difference for a pair of points from the trajec-
tories. In Figure 5.1, the progression of delays is visualized as a dotted
curve. Bothpositive andnegative delays canoccur over time, depend-
ing onwhether the first point of the pair has a larger time stamp than
the second one or vice versa. A positive delay corresponds to the first
pointbeingdelayed,while anegativedelaycorresponds to thesecond
point being delayed.

Using the direction of movement and the displacement at
corresponding time stamps of the trajectories at equal times, Long
andNelson [2013a] defined thedynamic interactionmeasure for the
calculation of strength and degree of interaction betweenmoving ob-
jects. However, interaction often includes a delayed response. For ex-
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ample, delays are expected in interactionmovement patterns for be-
haviors associated with pursuit and escape, confrontation, and avoid-
ance [Merki and Laube, 2012].

Computational methods for detecting a delayed response often
search for movement episodes from two trajectories with similar
characteristics, but with a delay for one of the trajectories. Reaction
delay is akeyparameter inascertainingboth leadershipandcausality
since amoving entity requires time toperceive, process, and respond
to its neighbor’s motions. Hence, movement patterns are character-
ized by periods of interactive and non-interactive behavior. Such an
episode refers to a period of time, and itmight, therefore, be express-
ed as a sequence of points ranging from one point to all of them. This
dependson the level of analysis of the interactivebehavior. The scope
of the analysis can be varied from a local analysis over episodes to a
global analysis. A local analysis reveals the times and locations of dy-
namic interactions, and allows a finer treatment of the interaction it-
self [Long and Nelson, 2013a].

A ‘follow-behind’ pattern is detected in Buchin et al. [2008] by find-
ing episodeswhere two trajectoriesmove through approximately the
same locations, but with a small delay. Nagy et al. [2010] compute a
similar pattern by looking at how one trajectory copies the direction
of movement of another with a delay. Using a time-ordering proce-
dure to analyze the cross-correlation of velocity and distance,
Giuggioli et al. [2015] extract interaction delays and are able to clas-
sify copying patterns in both space and direction.

There is a wide range of alignment methods, e.g., Dynamic Time
Warping [Berndt and Clifford, 1994], Edit Distance on Real
Sequences [Chen et al., 2005], and the Fréchet distance [Alt and Go-
dau, 1995], that aim at simply identifying similar movement. We dis-
cuss thesemethods inmore detail in Section 5.4.2.

Inmovement analysis there is a growing interest in analysismethods
that include visualizations. Andrienko et al. [2013] analyze delayed re-
sponses in the context of groupmovement. To identify a group order-
ing over time, they first precompute a centroid on the collection of
trajectories and then rank the interaction of a trajectory and the cen-
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troid for each trajectory of the group. One pattern that they detect is
the direction-based delay pattern byNagy et al. [2010]. Its occurrence
is visualized in space and time.

Ouraimisavisualanalyticsapproachthatexploresdelayedresponses
in the form of action-reaction patterns. For this purpose, we propose
an approach to analyze and visualize delays on two trajectories. We
expect that the trajectories have been recorded simultaneously and
with the same sampling rate such that the input data captures spatial
and temporal relationships at the same time.

Although our focus is on pairs of trajectories, we also show the appli-
cation of ourmethodology to a set of three simultaneous trajectories.
Computing and visualizing an alignment on k trajectories is cumber-
some since the computational time of current state-of-the-art tech-
niques for alignments grows exponentially in the number of trajecto-
ries. Thus, it is inherently demanding to develop an interactive visu-
alization for k trajectories that captures interaction events.

To determinewhether two trajectories have interactions at all, we de-
velop a new approach to compute a global correlation in sub-quadra-
tic time in the length of the trajectories (see Section 5.3). The global
measurecaptures theoverall interactionbetween themovingobjects
by computing the correlation via the Fast Fourier Transform and ap-
proximates the global delay under an interactionmeasure.

We have implemented our approach in a prototype visual analytics
tool. Our approach shows that quantification of movement patterns
complementsqualitativeknowledgediscovery, suchasvisualizations,
so that we support movement analysts who are in need of both. We
also introduced a novel similarity measure between trajectories,
which incorporates spatial and directional characteristics. Crucial to
the approach to analyze delays locally is the computation of a match-
ing between simultaneously recorded trajectories. The matching al-
gorithmoptimizes the alignment of thematchingwith respect to cer-
tain features of the trajectories. The temporal alignment is thenused,
which is induced by a matching, to analyze the delay. This approach
scales up to hundred points in the trajectories since it visualizes the
trajectories and their interaction patterns as awhole. We summarize
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our visual analytics approach in Section 5.4.

In this chapter, we conduct new, extensive experiments on both the
FFT-approach and the matching-based approach on three datasets
(see Section 5.5). We compare our results to those obtained by the
time-ordering approach by Giuggioli et al. [2015], DTW and others.
We extend the matching-based approach to three trajectories in or-
der to relate the result on the interaction among the three moving
objects with a pair-wise analysis of the triplet.

5.2 Interaction and Similarity Measures

Measuring interaction is closely linked to measuring similarity. In
this section, we describe properties of thesemeasures and review in-
teraction measures used in our tool. Trajectory data can be repre-
sented as a sequence of points over time. Hence, it consists of direc-
tions and locations. Interaction measures can be distinguished into
these types. We are interested in several, different facets of interac-
tion. By combining existingmeasures into a singlemeasure, the com-
bined measure expresses more complex interactions. In this work,
we analyze only discrete trajectories.
Definition 5.1. A discrete trajectory T is a sequence of n time-
stamped points 〈((p1, t1), (p2, t2), . . . (pn, tn)〉, where each p ∈ Rd and
each t ∈ R+ for  ∈ {1, . . . , n}. T (t) selects the corresponding point in
the trajectory for a valid time stamp t, so T (t) = p.

Given a pair of trajectories, we define a delay as the time difference
for the corresponding time stamps of a pair of points. Without loss
of generality, we assume that a delay τ has a discrete value between
0 and n − 1, thus τ ∈ {0, . . . , n − 1} . The sampling rate of the underly-
ing dataset is then multiplied with τ to obtain an actual delay, e.g., in
seconds.

Beforeelaboratingon the interactionmeasures thatweused inour al-
gorithms for computing a matching, we look at common properties
that these measures should provide. Without loss of generality, we
presume that the measures are given as a distance, i.e., smaller dis-
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tances values correspond to higher similarity. A distance can be eas-
ily transformed into a similaritymeasure and vice versa.
Definition 5.2. A metric on a set X with d : X × X → R satisfies the
following conditions for all , y, z ∈ X

d(, y) ≥ 0 (5.1)

d(, y) = 0 if and only if  = y (5.2)

d(, y) = d(y, ) (5.3)

d(, z) ≤ d(, y) + d(y, z). (5.4)

We require the properties of a premetric (with symmetry). It is es-
sentially ametric, forwhich thedistancemightbe zero for some ̸= y,
see equation (5.2), and the triangle inequality does not have to hold,
see equation (5.4).

p q

p′
q′

dp dq

θp θq

Figure 5.2: A metric space with p ∈ T1 and q ∈ T2 in R2

Givenapairofpoints (p, q) ∈ Rd×Rd on trajectoriesT1 andT2, a similar-
itymeasure can be computed fromspatial properties or the direction
of themovement (p, q). Themovement vector pp′ is the directed line
segment from p to the consecutive point p′ with length δp. The same
holds for q respectively.

The direction of p in T1 measures an angle θp on the movement vec-
tor pp′ with regard to some other criteria. Very frequently, the head-
ing is used, which is the angle θp that spans between pp′ and an axis,
usually the x-axis [Long and Nelson, 2013a], as depicted in Figure 5.2
for two-dimensional trajectories. Othernotions formeasuringangles
are possible as well. The turning angle is the angle between pp′ and
its consecutivemovement vector [Kareiva and Shigesada, 1983]. The
angle between the line segment pq and the movement vector pp′ is
the so-called exposure angle [Giuggioli et al., 2015]. It can be used to
identify leadership between the trajectories because it expresses rel-
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ative headings with respect to a line segment of a pair of points from
themoving objects.

Direction-basedmeasurescalculateacorrelation fromthe twoangles
θp and θq from a pair of points (p, q). A simple directional similar-
ity measure for (p, q) is the cosine of the difference between θp and
θq [Long andNelson, 2013a]. If both entities aremoving in exactly the
same direction, its value is 1. When the directions from the move-
ment vectors are pointing into opposite directions, the similarity val-
ue is −1.
A similaritymeasure for spatial propertiesuseseither the locationsof
a pair of points or the movement vectors of a pair of points. By using
the Euclidean distance, we are able tomeasure the similarity of point
locations.

Thedisplacement [Long andNelson, 2013a] expresses a similarity be-
tween δp and δq, the lengths of movement vectors pp′ and qq′. The
parameter α controls the behavior of the similaritymeasure.

displacement(p, q) := 1 −
� |δp − δq|
δp + δq

�α
. (5.5)

By using a large α, it restricts the displacement to regard large differ-
ences as more similar. To consider large differences as dissimilar, α
is set to one as a default.

Next, we survey premetrics that combine both directional and spatial
properties. Thedynamic interactionmeasureproposedbyLongand
Nelson [2013a] is one of these premetrics; it multiplies the displace-
ment with the cosine on the difference of the headings.

s(p, q) := cos(θp − θq) ·
�
1 −
� |δp − δq|
δp + δq

�α�
.

If one of the factors becomes zero, then either the impact of the head-
ing or the movement vector is suppressed. This means, therefore,
that theother part doesnot contribute anymore (see Figure 5.3).
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θpp qθq

Figure 5.3: Cosine on heading between θp and θq yields zero for two-
dimensional trajectories.

This issue can be resolved by scaling the distance d(p, q) between
(p, q) by the similarity of the headings θp and θq. The distance d(p, q)
can be an arbitrary Lp normon (p, q). We call this the directional dis-
tance:

ddir(p, q) := d(p, q) · [2 − cos(θp − θq)].
Thus, the directional distance scales the actual distance on the pair
of points (p, q) by the similarity of directions. In contrast to this, the
dynamic interaction measure by Long and Nelson [2013a] uses the
movementvectors insteadof adistancenorm. Themore theanglesof
p and q deviate, themore the distance between them stretches.

In order to measure similarity on k moving objects simultaneously,
we need to extend our notion of a premetric to k trajectories. Given
points (p1, p2, . . . , pk) inRd×Rd×· · ·×Rd, wewant tohavean interaction
measure on k trajectories simultaneously: d(p1, p2, . . . , pk).

One way to compose such a measure is to use either the sum, the
squared sum, or themaximumof apairwise interactionmeasure, e.g.,
for the directional distance and the sum, the combined distancemea-
sure is the following:

d(p1, p2, . . . , pk) :=
n∑
=1

n∑
j=+1

ddir(p, pj)
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Whenwechoose themax-valueof thepairwiseEuclideandistanced2,
the distancemeasure is the following:

d(p1, p2, . . . , pk) := mx
1≤≤n;+1≤j≤n
�
d2(p, pj)
	

An interesting question is how to define an interactionmeasure that
is sensitive to the movement in the trajectories. In Figure 5.4, a zig-
zagmovement occurs in one trajectorywhile the other trajectory pro-
gresses in theglobaldirection. It is, therefore, desirable todesignsim-
ilarity measures that capture such irregular movements as either a
special type of interaction, or as a particular similarity value.

Figure 5.4: Zig-zag movement of one trajectory while the other moves to-
wards the global direction

5.3 Fast Computation of Global Delays

Given a similarity measure d for interaction of time-stamped trajec-
tories, the global delay (τgob) between trajectories T1 and T2 is the
time shift τ thatmaximizes the similarity between T1 and a copy of T2
whose points have beendelayedby τ timeunits. Hence, the global de-
lay τgob has O(n) possible time shift values within the range [0, n −
1] .

τgob(T1,T2) = rgmx
τ

1

n

∑
(,+τ)∈[0,n−1]2

d(T1(),T2( + τ)). (5.6)
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For trajectories with many points, it is desirable to compute such
global delays efficiently. A simple but time-consuming approach
would be to individually compute the similarity between trajectories
for all possible time shifts. As an alternative to this O(n2) time algo-
rithm, it turns out that for the similarity measures defined in
Section 5.2, the global delay between two trajectories can be approx-
imated in time sub-quadratic in their length. Specifically by using
a Fast Fourier Transform (FFT), we can efficiently approximate the
similarities for all O(n) candidate values of the global delay in a total
of O(n logn) time. From those candidate values, we extract the global
delay in linear time, which is the delay with themaximum similarity
of the candidate values.

5.3.1 Correlations and the Fast Fourier Transform

First, we will introduce the basic notions on Fast Fourier Transforms,
see for instance [Brigham, 1988], then we apply them to trajectories.
The correlation between two complex numbers  and b is defined as
the complex number corr(, b) =  · b where  is the complex con-
jugate of . More generally, the correlation between sequences A =
[0, 1, . . . , n−1] and B = [b0, b1, . . . , bn−1] of complex numbers is de-
fined as:

corr(A,B) =
n−1∑
=0

 · b.

Thecross-correlationA⋆Bdefinesacorrelation forevery timeshiftτ ∈
[0,1, . . . , n − 1], such that when τ = 0, we have that (A ⋆ B)τ is exactly
corr(A,B).

(A ⋆ B)τ =
n−1∑
=0

 · b(+τ)mod n.

The FFTF and its inverseF−1 take a sequence of n complex numbers
as input and return a sequence of n complex numbers. The cross-
correlation theoremstates that A⋆B canbe computed for the n values
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of τ using the Fast Fourier Transform as follows:

A ⋆ B = F−1
�
F(A) ·F(B)� .

X and X · Y operations on sequences act in an element-wise fashion.
SinceF andF−1 both takeO(n logn) timetocompute, thenvalues

[(A ⋆ B)0, . . . , (A ⋆ B)n−1]

of the cross-correlation are computable in O(n logn) time.

To obtain a global delay τgob, see equation (5.6), we now apply these
fundamentals to trajectories. Trajectories contain a finite amount of
points. The cross-correlation, however, is based on the assumption
that the trajectories will repeat indefinitely. We discuss this conver-
sion of the trajectories in the following.

To account for trajectories that do not repeat, wemust correlate time
stamps that are outside the range ( or  + τ /∈ [0, n − 1]) with a value
of zero. This is achieved by padding both sequences c(T1) and c(T2)
of complex values with n zeros. The function c resembles a trajec-
tory under a similarity measure as a sequence of complex numbers.
For T1, this yields a sequence C(T1) = [c(T1(0)), c(T1(1)), . . . , c(T1(n −
1)),0,0, . . . ,0] of length2n. Computing thecross-correlationbetween
the padded sequences then correctly handles delayed time stamps
that are out of range. Correlations for negative delays −n < τ < 0
are now stored at index 2n+ τ of C(T1) ⋆C(T2), and correlations for de-
lays 0 ≤ τ < n are simply stored at index τ. The interaction for a delay
is given by the corresponding correlation divided by n.

5.3.2 Approximation of Similarity Measures

We wish to use the FFT to compute the global delay between trajec-
tories under the similarity measures of Section 5.2. To accomplish
this, we convert both trajectories into a sequence of complex num-
bers such that the similarity under time shifts can be derived from
their cross-correlation. In particular, for a given interactionmeasure
d(p, q), we are looking for a function c that converts a data point of a
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trajectory intoacomplexnumbersuchthatd(p, q) ≈ corr(c(p), c(q)) =
c(p) ·c(q) for all pairs of points p and q on the trajectories thatwewant
to compare. It is often convenient to write the function c in polar co-
ordinates, such that the magnitude of c(p) : C is ƒ (p) : R and its angle
in the complex plane is g(p) : R.

c(p) = ƒ (p)eg(p).

The correlation between c(p) and c(q) is then given by

corr(c(p), c(q)) = ƒ (p)e−g(p) · ƒ (q)eg(q) = ƒ (p)ƒ (q)e(g(q)−g(p)).

As an example, consider the direction-based similarity measure
d(θp, θq) = cos(θp − θq). In this case, taking ƒ (θp) = 1 and g(θp) = θp
gives us c(θp) = eθp , and we obtain corr(c(θp), c(θq)) = e(θq−θp) =
cos(θq − θp) +  sin(θq − θp) from which the exact original similarity
measure cos(θp − θq) can be derived. We show that if an interaction
measure d can be derived from the correlation in this way, the global
delaybetweentwotrajectoriescanbecomputed inO(n logn) time.

For displacement-based similarity measures it is challenging to ex-
tract theoriginal similaritymeasure fromsucha correlation. Instead,
we approximate displacements δp, δq from the displacement similar-
itymeasure, see equation (5.5), by

ƒ (δp) = 1, and g(δp) =
π

2

log(δp + β)

log(1 + 1
β )

.

To approximate the displacements δp and δq well, β is chosen depend-
ing on an α from the displacement similaritymeasure.

Here δq and δp arenormalized to lie in the range [0,1] . Thedifference
between the original measure d(δp, δq) and our approximation

corr(c(δp), c(δq))

is shown in Figure 5.5. One clear difference is how small displace-
ments are correlated. Whereas the original measure barely corre-
lates small displacements, our approximation treats such
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displacements as similar, which seemsmore natural. If this is not in-
tended, the function ƒ canbe tuned to suppress this correlationof low
displacements. In particular, taking ƒ () = γ allows us to discrimi-
natemore between small and large displacements, depending on the
parameter γ.

(a) (b)

Figure 5.5: Comparison of displacements with our approximation (a) Dis-
placements α = 2 [Long and Nelson, 2013a] (b) Approximation
using β = 0.15, ƒ (dp) = 1 and g(dp) =

π
2
log(dp+β)
log(1+ 1

β )

5.4 Visual Analytics for Local Analysis of Delays

Varying the temporal scale in analyzingmovement data is important
to extract movement patterns [Laube and Purves, 2011]. The global
analysis of delays, discussed in Section 5.3, enables to quantify
whether and howmuch the trajectories are correlated. To explore in-
teraction events in detail, an approach over time and space on a local
level is necessary.

In this section, we summarize our work from Konzack et al. [2015] in
which a matching between two trajectories was used to compute lo-
cal movement patterns on a so-called delay space. To capture them
in a visually salient way, we bundle the edges as patches to indicate
the source and relevance of the interaction event. Our focus lies on
episodes of movement in which two moving entities show similar
characteristics, but possibly with a delay.
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5.4.1 Requirements for Analyzing Interactions

The main analysis task concerns the interpretation of interaction
events and patterns in two trajectories. Since interaction can be de-
fined in different ways depending on the context, our visual analytics
tool should allow the analyst to identify interaction patterns/events
in the data (R1) for various interactionmeasures.

There can bemany events, whichmay impede visual analysis if they
are all shown in detail. The visualization should, therefore, allow an
aggregationof the surroundings of amovement pattern tohelp an an-
alyst focus on the progression of the interaction before and beyond
the current event. This leads to the requirement that critical events
should be visually salient (R2).

Interaction between moving objects occurs at different scales: glob-
ally over the trajectories as a whole, locally at either a specific point
in time or over some time interval, or in episodes (a partitioning) of
particular patterns [Laube et al., 2007]. An analysis tool should, there-
fore,providemeans toanalyze interactionatdifferent scales (R3).

Our computational approach relies on determining a matching be-
tween two trajectories in what we call a delay space. For the purpose
of the analysis, it is necessary to understand the spatial structure of
the delay space and its relation to the corresponding matching in
space and time (R4).

5.4.2 Computing Matchings

To identify a potential interaction between two moving entities, we
are looking for pairs of data points, one from each trajectory, that are
similar according to one of the distance measures discussed in Sec-
tion 5.2. For this purpose, we first define the delay space as a grid of
distances for all pairsof pointson the two trajectories, as shown inFig-
ure 5.7(b). More formally, given two trajectories of lengths |T1| = m
and |T2| = n, the delay space DL: [1,m] × [1, n] → R+ is a grid ofm × n
points (p, qj) ∈ T1 × T2.
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To identify delayed interactions, we compute a plausible alignment
between the two trajectories. Such an alignment should map any
point of one of the trajectories to either another point or a contigu-
ous range of points of the other trajectory. We call such an align-
ment a matching between the trajectories. In the delay space, this
corresponds to a bi-monotone curve from the lower left corner (start-
ing points of both trajectories)DL [1,1] to theupper right corner (end
points of both trajectories) DL [m,n] . Such a matching is shown as a
green curve in Figure 5.7(b).

As a basis for our analysis, we pick an alignment of overall high simi-
larity, a matching between two trajectories. There is a wide range of
similaritymeasures for trajectories that are based on finding such an
alignment.

DynamicTimeWarping (DTW)aligns two trajectories –ormoregen-
erally two time series – as tominimize the (squared) sumof distances
between matched elements. An DTW alignment can be computed
in quadratic time using dynamic programming [Berndt and Clifford,
1994].

The Edit Distance (ED) is a widely used measure for similarity
between two strings [Wagner and Fischer, 1974]. It has been applied
in bioinformatics and language processing. The Edit Distance on
Real Sequences (EDR) is an adaption of ED for sequenceswithnumer-
ical values, for instance trajectories [Chen et al., 2005]. The EDR tack-
les the problem of transforming numerical values from ED into inte-
ger values by defining a match on a pair of points. A pair of points is
matched in EDR when the distance between the pair is less than or
equal to an ϵ threshold. To compute the EDR, a similar dynamic pro-
gramas for DTWis used. The ϵ threshold restricts the choiceswithin
the dynamic program of EDR. DTW uses distances in the dynamic
program;whereas, EDRusesunit costs. TheLongestCommonSubse-
quence (LCSS) is, essentially, a restricted version of the ED, in which
only two of the three operations used in the ED are allowed [Maier,
1978].

Another alignment methodminimizes themaximum distance along
the trajectories. For curves, it is based on the Fréchet distance, and
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thecorrespondingmatchingcanbecomputed innear-quadratic time
[Alt and Godau, 1995]; whereas, the direction-based Fréchet
distanceminimizes the maximum direction difference between the
two curves [de Berg and Cook, 2011]. Specifically, we use a so-called
locally-correct Fréchet matching (LCFM). Such a matching has the
followingproperty: ifwe take any sub-curveof thematching (starting
at a pair of time stamps (s, js) andending at a pair (e, je)) and consider
the sub-grid of the delay space restricted to the corresponding time
stamps (DL∗ : [ s, e] × [ js, je] → R+), then an LCFM also minimizes
themaximumdistance restricted to this sub-grid [Buchin et al., 2012].
Similar to this restriction, a profile functiondetermines the structure
of such amatching in a lexicographic Fréchetmatching [Rote, 2014].
Inour tool, weuse thedynamicprogrammingalgorithmfromBuchin
et al. [2012] to compute a discretematching based on the Fréchet dis-
tance. Themain idea is to construct a tree,withDL [1,1] as the root, to
all valid, subsequent, andmonotonouspaths towards the root. All ver-
tices on the path fromDL [m,n] to the root are the edges of thematch-
ing. This algorithmworkswithanypremetric (seeSection5.2) though
Buchin et al. [2012] used it only with Euclidean distances.

To compute a matching on three or more trajectories, we need to ex-
tend the notion of a Fréchetmatching from two trajectories to a set of
trajectories. Dumitrescu andRote [2004] proposed a definition of the
Fréchetdistanceona set of curves. In theirdefinition, theFréchetdis-
tance is the longest leash in the set of curves, such that the length of
the longest leash isminimized over all tuples of points from the input
curves. Dumitrescu and Rote [2004] showed that a 2-approximation
of the Fréchet distance on the set of curves can be constructed from
all pairwise Fréchet distances.

Ourvisualanalytics tool supportsanyof thealignmentmethodsabove
and any similarity measures (see Section 5.2), which allows to use a
premetric in the delay space.
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5.4.3 Interactive Analysis of Delays in Matchings

The visual analytics approach allows users to explore matchings on
two trajectories, the degree of interaction, and delays. The proposed
approach was implemented in a prototype visual analytics tool that
supportsmultiple coordinatedviewsof the trajectories,matching, de-
lay space, delay plot, and distance plot for the purpose of visual ex-
ploration (requirement R4). To avoid visual clutter in the trajectory
plot, we bundle the edges of a matching in colored patches. Doing so
makes changes of the delay visible over time (requirements R2 and
R3), so that important local movement patterns can be perceived (re-
quirement R1). These local patterns might reflect changes in direc-
tion or distance, or show who is ahead and who is behind. A screen
shot of the tool is shown in Figure 5.6.

Figure 5.6: Screen shot of the tool, showing the delay space, the trajec-
tory and matching visualization with an enlarged section of it,
the distance plot, and the delay plot. Ahead/behind behavior is
visualized by a glyph.
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The analytical process behind our visual analytics tool consists of the
following steps:

1. Open and load a dataset
2. Select a similaritymeasure and an alignmentmethod
3. Analyze the structure of thematching
4. Refine the parameters for the alignment method and the simi-

laritymeasure
5. Identify interaction events by browsing the edges

First, we need to open and load the dataset of themoving objects into
our visual analytics tool (step (1)). Next, we pick a similaritymeasure,
to construct thedelay space, andanalignmentmethod, thatwill drive
the structure of the computedmatching (step (2)).

Then, we analyze the characteristics of the matching in the delay
space and the trajectory visualization (step (3)) by navigating through
the edges of thematching.

Amatching enables an interactive, local analysis of delays by sliding
through the edges of thematching. Themain interaction component
is the slider between the trajectory visualizationand thedistanceplot,
which browses the edges of the matching (although not the time
points), see Figure 5.6.

(a) (b)

Figure 5.7: Visualizations for a matching based on the directional distance
similarity measure. (a) Trajectories and a corresponding match-
ing (b) The delay space and a matching

A delay space is depicted in Figure 5.7(b). Trajectory B is on the y-
axis and trajectory R on the x-axis. The values are shown by a linear
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heatedbodycolor scale, e.g., see [Munzner, 2014], and thematching is
visualized as a green path through the delay space. Diagonal line seg-
ments correspond to simultaneous movement of both objects, hori-
zontal line segments correspond to movement of the object in R and
stationary behavior in B, and vertical line segments correspond to
movement in B and stationary behavior in R. In Figure 5.6, a cursor
in the delay space points to the currently selected edge of thematch-
ing – indices of thepair of points on the axes – accompaniedbyaglyph
to encode that trajectory B, symbolized by the blue triangle, is behind
trajectoryR – the red square (see Figure 5.6 for an enlargement). This
stacking reverses when trajectory B is ahead. If no delay occurs, both
symbols appear side-by-side.

A straightforward way to visualize the trajectories and the
correspondingmatchingwouldbe toplot the trajectories in theplane,
and to connectmatched points between the trajectories by a line seg-
ment. This would result in a very dense visualization and visual clut-
ter, however. A monotonous matching has a nice property that has
been used to simplify the visualization: in thematching, situations in
which one point of one trajectory (the actor) is matched with several
points of an other trajectory (the reactor) occur often. This
corresponds to an interactionpatternwith adelayed response. These
edges then can be bundled into a single patch to avoid visual clutter.
We color the patches to show source, the actor, and the relevance of
the corresponding reaction events (requirement R2).

An example visualization for two short trajectories, B and R, is shown
in Figure 5.7(a). Trajectory B is below R, and the reaction events of B
and R are associated with the colors blue and red, respectively. Both
moving entities start at the bottom of the plane, progress in the same
direction, approach each other, split into almost opposite directions,
and finally move in the same direction although at a large distance.
The matching is based on the directional distance. At the beginning,
almost no interaction occurs since both are moving along. The gray
patch indicates a delayed response by R, in which one point of B is
matched to the first two points of R. As the moving objects approach
each other, the structure of the patches becomes different. Within
the red patch, the color changes from gray to red indicating that R
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increases the delay to B. The blue patch expresses that B reduces the
delay to R until the delay vanishes (the color becomes gray).

The trajectory visualization, in Figure 5.6, provides an overview of all
interactions between both trajectories in translucent colors. The se-
lected edge and its direct surroundings in the focus area are shown
in saturated colors. This helps to untangle the plot of the trajecto-
ries since the locations from different time stamps may overlap in
space. Thedelay is visualizedbyglyphs: a circle for theactor anda red
square or blue triangle for the reactor (the same visual encoding as
in the delay space visualization). If no delay is observable, both points
are depicted as circles.

Thedelayspacevisualizationcanbeused todetect specificmovement
patterns (requirementsR1andR4). Anexample isa zig-zagmovement,
as depicted in Figure 5.8 for the upper trajectory, while the other tra-
jectoryproceeds in a straight line. Thedelay spacebasedon thedirec-
tional distance similarity measure shows a clear color change (a ver-
tical stripe) at the point of this movement. As the trajectory is short,
this pattern can also be observed in the trajectory plot. However, for
longer trajectories, the trajectory plot does not scale very well, and it
becomes more difficult to read; whereas, the matrix-based visualiza-
tion of the delay space easily scales up to hundreds of points.

(a) (b)

Figure 5.8: (a) Trajectory with a zig-zag movement pattern and a straight
trajectory. (b) Delay space based on the directional distance
similarity measure. The strong color change corresponds to the
zig-zag pattern.
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As soon aswe perceive the overall structure of the patcheswithin the
matching and its delay space as unfruitful, we refine the alignment
method and/or the similarity measure (step (4)) so that we obtain a
new delay space and a novelmatching. For this new setting, we apply
steps (2) to (4) until we are satisfied with the overall structure of the
matching.

Finally, we identify interaction events by browsing the edges of the
matching (step (5)) in more detail. The aim is to find consecutive epi-
sodes inboth trajectories that correspond tohigh interaction. By trac-
ing the patches in form of action-reaction patterns in the trajectory
visualization and rapid color changes in the delay space visualization,
we are able to read off the time-stamps for those events in the delay
space visualization.

Additionally, the distance anddelay plot, see Figure 5.6, help to detect
action-reactionpatterns,whichglobally lookasdepicted inFigure5.1,
since significant changes in the progression of delays (requirement
R3) are related to changes in the interaction between themoving ob-
jects. The distance and delay plot show progression of distance and
delay over time, respectively. The cursors help to read off exact val-
ues at the left side of the plots. The distances are also color-coded on
a heated body color scale, and the delays are plotted in the colors of
the trajectory.

5.5 Experiments

Toevaluate our approach, we applied it on three datasets. First, we an-
alyze the interactionbetween twoUltimate Frisbee players [Long and
Nelson, 2013a]. On this dataset, we compute global delays with our
FFT-basedapproachonsubsamples (episodes) todeterminehowwell
theseepisodescorrelate. Then,weanalyze thecoveringperformance
between the attacker and the defender locally with our
matching-based visual analytics tool.

The seconddataset is apair ofhomingpigeons incollective flight [Pet-
tit et al., 2013]. We are interested here in extracting interactivemove-
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ment episodes by applying our visual analytics tool to a 2D projection
of themoving pigeons.

On the third dataset, a flock of homing pigeons [Santos et al., 2014b],
we selected three trajectories from the flock to analyze the interac-
tion within a matching among these three moving objects. We com-
pare the triplet matching with the pairwise matchings on the three
pigeons.

5.5.1 Analysis of the Global Delay

The trajectories in the Ultimate Frisbee dataset from Long and Nel-
son [2013a] describe the movements of a defender, trajectory B, cov-
ering an attacker, trajectory R, who tries to get a pass. The defender
wants to intercept or dissuade passes from being completed. The de-
fender’smovement is a reaction to the attacker’smovements. In this
scenario, the delay can be used as ametric to evaluate the defender’s
performance in covering the attacker.

The trajectories were simultaneously recorded with a sampling rate
of 5 Hz, and each trajectory consists of 276 GPS locations. The dura-
tion of the recording is 60 s. Somemissing locations occurred when
the players were stationary. To resolve this issue, we interpolated the
trajectories linearly over time for thosemissing locations. This inter-
polated datasetwith 300 locations per trajectory has beenused in our
analysis.

Long andNelson [2013a] propose a globalmeasure for dynamic inter-
action to determine whether a substantial amount of interaction be-
tween the players occurred. This global measure is derived from the
values from local dynamic interaction events. We compute a related
measure, the global delay by using our FFT-based approach (see Sec-
tion 5.3).

We analyze the global interaction using displacements because dis-
placements are sensitive to the time shifts that are used for finding
the global delay. This also allows us to evaluate the performance of
approximations for displacements from Section 5.3.2.



5

Experiments 105

The main goal is to decide whether the trajectories have a substan-
tial amount of interaction or not. In order to distinguish between in-
teractive and non-interactive behavior, we selected subranges of the
Frisbee data, such that we can perceive the difference in the global
correlation among the trajectories. In Figure 5.9, the displacements
of the two players are plotted over time. The selected subranges are
indicated in saturatedcolors. Weuse thedisplacementmeasurewith
α = 1 throughout this section. We first compare the global delay be-
tween B1 and R1; then, we compute the global delay between B1 and
R2. To overlay the displacements, we shift the time stamps of R2 onto
B1 by −30 s on each point of R2.
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Figure 5.9: Displacements of Ultimate Frisbee data. The selected subranges
are indicated in saturated colors. The displacements for the sub-
range B1 from trajectory B are blue. The values for the subranges
R1 and R2 from trajectory R are red and orange.

The set of trajectories B1 and R1, which we analyze for the global de-
lay, are temporally aligned, and they consist of a significant amount
of interaction within the first 20 seconds [Long and Nelson, 2013a].
In Figure 5.10(a), the correlation of displacements between B1 and R1
are computed for all possible time shifts and plotted as a black line.
The observable highest correlation is at 0 seconds, which constitutes
the global delay under the displacement similarity measure. Since
either one or the other trajectory has been time-shifted for an align-
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ment in the global delay, the plots for the global delay are asymmetri-
cal. Wealso ranourFFT-basedapproach to approximate thedisplace-
ments globally. The results are shown in Figure 5.10(a) for two values
of β as dashed lines (β = 0.0 and β = 0.15). We observe that these
values yield good approximations. However, there are some devia-
tions at the boundaries of the time-shifting. The best approximation
of displacements is when our FFT approach has a β between 0.0 and
0.15.
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Figure 5.10: Displacements and our FFT-based approximations on sub-
ranges from Ultimate Frisbee data (a) Similarity of displace-
ments between trajectories B1 and R1 (b) Similarity of displace-
ments between trajectories B1 and R2

In the second set of trajectories B1 and R2 from Figure 5.9, we com-
pare trajectories that arenot temporally aligned. In order to compute
a global delay between them, the time stamps of R2 have been shifted
by −30 s. The correlation of the displacements between B1 and R2 is
plotted in Figure 5.10(b) as a black line. No remarkable correlation is
observable, and the maximum delay, the global delay, is not at 0 sec-
onds. OurFFT-approximationsof thedisplacements,withβ = 0.0 and
β = 0.15, yield oscillating values (dashed lines). The correlation’s val-
ues are below the displacements’, and we omitted negative values in
the plot.
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5.5.2 Analysis of Delays on Ultimate Frisbee Data

In team sports, such as ultimate frisbee, players engage in bursts of
movement that canbecharacterizedbydifferentmovementpatterns.
Therefore, a local analysis is more informative than a global analy-
sis for the Ultimate Frisbee dataset [Long and Nelson, 2013a]. Multi-
ple episodes of different levels of interaction occur over time in this
dataset. Our aim is to segregate these segments into episodes of high
and low interaction.

(a) (b) (c) (d)

Figure 5.11: Matchings under different similarity measures to detect a loop
pattern in the Ultimate Frisbee data: (a) based on the Euclidean
distance measure, (b) based on the similarity of headings, (c)
based on the dynamic interaction similarity measure, and (d)
based on the directional distance similarity measure. (a) high-
lights it as an interaction event. For (b) in the delay space, only
the adjustment of the defender B towards the attacker R is
found because it highlights the loop pattern partially as two
patches. Using the dynamic interaction measure in the delay
space (c) yields three patches, but the adjustments of the de-
fender after the loop are not captured as separate events. (a)
and (d) highlights the loop as an interaction event by a blue
patch followed by some smaller patches during the adjustments
within the reaction of the defender B.

To detect interaction events in our matching-based visual analytics
tool, we need to choose a similarity measure (see Section 5.2) for the
delay space that captures the movement pattern in a visually salient
manner (step (2) in Section 5.4.3) as well as an alignmentmethod (see
Section 5.4.2). In Figure 5.11(a)-(d), matchings have been computed
for the defender B’s reaction pattern to the attacker R (step (4)). We
employed, as Long and Nelson [2013a], an α = 1 in the dynamic in-
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teractionmeasure. The loop and its adjustment between the players
afterwards are captured clearly inmatchings based on the Euclidean
distance and the directional distance. As alignment method, we first
use an LCFM.

We opt to analyze the Ultimate Frisbee dataset under the directional
distance because this delay space is sensitive to direction-based and
spatial properties. During the episodes 0 – 25 s and 36 – 45 s, both play-
ers showa lowdistance, demonstratingahigh interaction. This is con-
sistent with the findings of Long and Nelson [2013a]. Our measures
detect an additional episode of interaction: during the interval 45 –
57 s, a turn by R is followed by a reaction of B, see Figure 5.11.

The progression of the distance over time, see Figure 5.12(a), follows
the structure of an action-reaction-pattern, as discussed in the previ-
ous section. In the delay plot, this event can also be seen in the form
of a significant change of the local delay, see Figure 5.12(b). Long and
Nelson [2013a] analyzed the coveringperformanceby thedynamic in-
teraction measure on pairs of points with the same time stamp; that
is why our notion of delay therefore does not occur in their analy-
sis.

(a) (b)

Figure 5.12: Distance and delay plot for matching in Figure 5.11(d) follows the
structure of an action-reaction-pattern with delayed response.
(a) The distance plot within a reaction. (b) The delay plot shows
a significant rise at the point where the defender reacts as a
loop movement.

Next, we performed the same analysis using different alignment
methods, specificallyDTWandEDR.Wecomputedmatchingson the
twotrajectoriesusingDTWandEDR.Thesealgorithmshave thesame
running time of O(n2) that computing an LCFM has. In the dynamic
programs for DTW and EDR, we maintained predecessor graphs to
construct a matching as well as to compute the distance value. The
original definition of EDR uses an epsilon on the absolute difference
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on each dimension of a pair of points. However, we used an ϵ thresh-
old on the actual distance norm used in the delay space to match a
pair of points.

(a) (b) (c)

Figure 5.13: Delay spaces for the loop pattern in the Ultimate Frisbee data in
a log scaling using the Euclidean distance: (a) shows a Fréchet
matching. The matching in (b) is based on Dynamic Time Warp-
ing. In (c) a matching has been computed on the Edit Distance
for Real Sequences with an ϵ = 1.6 on the delay space. (a)
stays longer in low distances after the horizontal stripe, within
the reaction event, than (b) and (c).

In Figure 5.13, we computed matchings in the delay space using the
Euclidean distance for the loop pattern of the Ultimate Frisbee data.
The horizontal stripe in the matchings of all three methods
corresponds to the reaction movement of the defender. All three
methods capture the loop. EDR recognizes the loop prematurelywith
respect to theothermethodsover time. Theprogressionof thematch-
ing curve in DTWand EDR are somehow similar. However, an LCFM
consists of more vertical segments in the matching than DTW and
EDR.Hence, theLCFMhasmorebends tomove through regionswith
low distances in the delay space; whereas, the matchings based on
DTWand EDR tend to stay shorter in this area of low distances.

The thresholdparameter ϵ tomatchapairofpointsheavily influences
the structure of a matching based on EDR. A relatively large or low
value forces thematching to prefer diagonalmovements in the delay
space. A pre-analysis of the distribution of the distances that may oc-
cur in a possible matching needs to be conducted in order to spot a



5

Experiments 110

suitable ϵ value because a relatively large or low value for ϵ forces the
matching to prefer diagonal movements even when it is possible to
take vertical or horizontal movements with lower distances. Hence,
EDR suffers from having to determine an appropriate ϵ before com-
puting a matching; whereas, other techniques yield better results
without the need of a parameter at all.

5.5.3 Analysis of Delays on Pigeon Data

Weanalyzed the global delay first to confirm that the trajectories are
correlated (results not included) and then applied our
matching-based approach on a segment of paired homing pigeon
flight trajectories collected as part of a larger pairwise dataset by Pet-
tit et al. [2013]. The time span of the data is 140 s using a sampling rate
of 5Hz. The trajectories have not been tuned or optimized. Pigeon B
flies a distance 1.62 km at an average speed of 16.75 ± 5.02ms−1 to
land 634m from its starting point, and pigeonR flies 1.33 kmat an av-
erage speed of 15.36± 4.92ms1 to land a distance 572m from its start
point. In this analysis, we used directional distance in combination
with LCFM.

An overview visualization is shown in Figure 5.14 for a selected event,
in which pigeon R reacts to the movement of pigeon B. The reaction
of pigeonRconsists of a transition froma right turn to a left turn. This
event is visible as a large blue patch in Figure 5.14(b). In the delay
space, as shown in Figure 5.14(a), this movement pattern is indicated
by the horizontal segment within the matching. Due to the adjust-
ment of pigeon R to the movement of pigeon B as a reaction, there
is a decline in the distance, see Figure 5.14(d). The delay continues to
increase at this point until themaximum delay is reached within the
reaction movement of pigeon R, see Figure 5.14(e). The movements
of the pigeons and their matching visualization are outlined in Fig-
ure 5.14(c); however, only the surroundings of the selected edge are
in the focus of the visualization.

Between 0 – 12 s and 20 – 66 s, the pigeons have low directional dis-
tance, indicating ahigh level of interaction, as canbe seen in both the
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distance plot and the delay plot (see Figure 5.14). The delay plot indi-
cates that the leadership switches between these two episodes. The
directional distance then generally increases with the exceptions be-
tween from 95 s to 106 s and starting again at 120 s, when the pigeons
have a high level of interaction again. Between 106 and 120 s, one pi-
geonmakes a loop while the other progresses in a straight line.

To evaluate these findings informally with those from another tech-
nique,weapplied the time-orderingapproachbyGiuggioli et al. [2015]
on the pigeon dataset, see Figure 5.15. For this approach, we have fo-
cused on the velocity cross-correlation to identify and classify copy-
ing patterns in direction. The optimal movement episodes, based on
a directional separation, are similar to the episodes detected by our
approach. For computational convenience, themaximumallowedde-
lays were capped at 4.5 s.

Figure 5.15: Delay plot for the time-ordering approach. The white contour
lines are a threshold for motion that is sufficiently aligned to
represent interaction. The black segments are the optimal inter-
action intervals representing the best delayed interaction that
can be extracted using this method. Both positive and negative
delays are detected within this method as well.



5

Experiments 112

Theepisodes0– 18 s, 20 –65 s, and 120 – 130 s areconsistentwith those
from our approach. At around 105 s and 118 s, two short movement
episodes of interactive behavior have been found. They capture the
beginning and the end of the loop pattern, but it is not detected as a
whole. Thedeviations areprobablydue to thedelayparametersof the
time-ordering approach since in ourmatching-based approach quite
large delays (max. 9.6 s) occur at around 120 s.

Compared to the time-orderingprocedure, ourapproachexhibits var-
ious advantages. Out approach does not require a pre-smoothing of
the dataset, and it can be extended beyond pairwise analysis.

5.5.4 Analysis of Delays on a Triplet of Pigeons

Our approach has focused so far on the analysis of interaction
between two trajectories. However, it is common in applications to
trackseveralmovingobjects asacollectivemovement, suchasa flock
or a group. A procedure to analyze the interaction amongmore than
two trajectories simultaneously is, in fact, verymuch in need.

There are two reasons why a pairwise procedure on more than two
trajectories is likely to fail: one is practical and the othermethodolog-
ical. Thepractical aspect is that thecomputational cost increasesvery
rapidly if one accounts for all possible pairs of trajectories. The
methodological problem is due to potential inconsistencies in iden-
tifying the correct sequence of events. For example, to explain it, let
us consider three simultaneously moving objects, A, B, and C. Sup-
pose that a pairwise procedure between A and B and between A and
C indicates, respectively, that B reacts to A with a (positive) delay τBA
and that C reacts to A with a (positive) delay τCA > τBA. If τBA is quite
different from τCA, the pairwise analysis between B and Cmost likely
will extract a delay τCB > 0, consistent with the fact that individual C
has responded to individual A later than individual B. But if the pair-
wise delays extracted are small, then it is not ensured that τCB > 0. To
avoid these issues, one ought to extract the delay for all individuals at
once.
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To do so, we extend our approach to compute amatching on three si-
multaneouslymoving objects, and we compare how the triplet analy-
sis differs from a pairwise analysis as well as howwell a tripletmatch-
ing captures action-reaction patterns on a local scale.

We use a dataset of a flock of 10 pigeons from Santos et al. [2014b],
which has beenmade available onMovebank [Santos et al., 2014a]. It
consists of simultaneously recorded GPS data using a sampling rate
of 4 Hz. The pigeons have been tracked for several trips.

All pigeons from the flock are likely to interact with each other since
they are all socially familiar to each other [Santos et al., 2014b]. The
transitive, pairwise comparison of the pigeons in Santos et al. [2014b]
has shown results with significant repeatability, such that we can val-
idate the pairwisematchings with the one obtained directly from the
triple.

Wehave selected three trajectories frompigeonsM,S, andUbecause
they represent different roles within the flock. Pigeon M has a high
rank for leadership while pigeons S and U have a low negative leader-
ship rank within the flock. Pigeons S and U are thus likely to exhibit
follower behavior. Santos et al. [2014b] explain that leadership roles
are stable within a flock across different flights.

A pairwise matching between pigeonM and S is shown in Figure 5.6.
The matching captures a circular movement wherein the distances
betweenthepigeonsvary, andchanges inposition,heading, and turns
occur. At thebeginningofa flight, therearemanyadjustmentsamong
the pigeons to the collectivemovement of the flock, which is why we
use a sample of 200 points from Flight 5 from time-stamp 800 to 999;
whereas, Flight 5 consists of 3845 time-stamped points in total.

To measure similarity between a triple of points, we used the maxi-
mumof the pairwise Euclidean distance (see Section 5.2) in ourmeth-
ods, LCFMandDTW, to compute a tripletmatching. For the pairwise
analysis, we used the Euclidean distance on the selected pair of tra-
jectories.

We projected the triplet matching into our visual analytics tool by
showing only the coordinates of the selected pair and leaving out the
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valuesof thenon-selected trajectory. AnLCFMona triplet results in a
similarmatching as a pairwise computation on the three trajectories
separately. This can be seen in Figure 5.16. A pairwise matching is
visualized as a blue curve in the delay space and the projected triplet
matching in green.

(a) (b) (c)

Figure 5.16: Delay spaces, in a logarithmic scale, for projections of a Fréchet
matching on three pigeons. The projections are in green, and
the pairwise LCFM is in blue beneath it. (a) shows the matchings
for the pair (M,U). The matchings in (b) are between pigeons M
and S. In (c) the matchings are shown for the pair (S,U). The
Fréchet distance is from (c), where the largest distances within
the triplet are obtained since the color in the delay space there
is the brightest of all projections of the triplet.

The triplet matching on the pair (S,U) coincides with the LCFM on
that pair of trajectories. The S-shape of the delay space is due to a
sharp turn by S within the circular, anticlockwise movement of the
flock. The longest leash is from the pair (S,U) since this projection
(see Figure 5.16) of the triple matching moves through a short seg-
ment within the S-turn in the brightest color of all three projections.
It hereby contains the largest Euclidean distance of the tripletmatch-
ing. The longest leash gives the pairs (M,S) and (M,U) slack for their
edgeswithin the tripletmatching. This fact is likely toexplainwhy the
pairwise projections deviate byhavinghorizontal stripes in the triplet
matching. However, these projections still avoid large values in the
delay space.
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(a) (b) (c)

Figure 5.17: Delay spaces, in a logarithmic scale, for projections of a triplet
matching on pigeons based on DTW. The projections are in
green, and the pairwise LCFM is in blue beneath it. (a) shows
the matchings for the pair (M,U). The matchings in (b) are be-
tween pigeons M and S. In (c) the matchings are shown for the
pair (S,U). The maximum distance value for the triplet match-
ing is obtained from (c) since the distance values within the
S-movement of the matching have the brightest color in the
delay space, i.e. the largest values.

To evaluate this LCFM on a triple of trajectories, we have computed
a triplet matching based on DTW. Figure 5.17 shows the projections
in green and beneath it the LCFM on the selected pair in blue. The
projections for the pairs (M,U) and (S,U) follow the progression of the
pairwise LCFM. The triplet matching on the pair (M,S) clearly devi-
ates from the LCFM since it prefers diagonal movement in the de-
lay space. This can be explained by the fact that DTW optimizes the
squared sumof Euclidean distances. As a result, DTWprefers tomin-
imize large distance values. The pairs (M,U) and (S,U) preserve a sig-
nificantly large distance with respect to (M,S).

Overall, the matchings between triplets provide results similar to
those obtained by pairwise matchings. Although, in general, such
equality may not be ensured as we explained earlier, for this dataset
it holds true independently of the alignment method used (DTW or
LCFM).
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5.6 Conclusions

We proposed a new approach to analyze interaction events between
two trajectories. First, we determined with our FFT-based approach
whether any interaction between the trajectories took place. After-
wards, we applied our main technique on the dataset, a versatile vi-
sual analytics tool, that enables time delays to be incorporated in in-
teractionmovement analysis.

Delayed responses play a key role in detecting interaction events in
movement data on a global and local scale. These events are mod-
eledwithin theso-calleddelay spacewhereinwecomputeamatching
between the moving objects. The purpose of our methodology is to
gain insight into action-reaction patterns by analyzing those match-
ings.

Our visual analytics approach uses multiple coordinated views to ex-
plore the movement data interactively. The edges of the matching
are visualized as colored patches to convey the structure of the inter-
action events. The relevance of themovement pattern is determined
by the delay among themoving entities, which is used as a color satu-
ration for the patches.

The experiments show that the structure of a matching provides im-
portant insights into action-reaction patterns inmovement data. The
computation of amatching relies on the alignmentmethod. We eval-
uated various types of state-of-the-art methods to compute a
matching. All of them are supported in our visual analytics tool. In
general, DTWandLCFMgave good results in our experiments. If the
movement of trajectories is relatively aligned, then both DTW and
LCFM yielded good results. However, LCFM gives better alignments
as soon as delayed responses appearwithin themovement data since
DTW tends to prefer diagonalmovements in the delay space.

We surveyed various interaction measures in our tool as well that
combine movement vectors, distance norm, or headings of the tra-
jectories. By combining the Euclidean distance norm and the differ-
ence in the headings, we introduced the novel premetric, the direc-
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tional distance. In our experiments, using the directional distance
yielded large patches; e.g., in the loopmovement of the Ultimate Fris-
bee dataset. The directional distance captured action-reaction rela-
tionships better as visible colored patches in the visual analytics tool
than other similaritymeasures.

The concept of a delay space and a matching can be generalized to
more than two trajectories. We showed this on a triplet of trajecto-
ries. In these experiments, the results on the triplet were consistent
with those from a pairwise analysis. They did not provide additional
insights to our datasets, however.

Visualizing the delay space and matching between simultaneously
moving objects is challenging since the delay space then has at least
three dimensions. Our delay space visualization is limited to support
only two trajectories as x and y-axes. Therefore, a novel technique
needs tobedeveloped tovisualizeamatchingonmore than twotrajec-
tories. Beyond theexamplespresented inourexperiments, ourmeth-
ods are widely applicable to the analysis of individual human move-
ment in a crowd, prey-predator interaction, wildingmating behavior,
as well as sports analysis.



5

Conclusions 118

(a) (b)

(c)

(d)

(e)

Figure 5.14: Visualization of pigeon trajectories and corresponding delay
space based on the directional distance similarity measure (a)
The delay space. (b) The focus area. (c) The trajectories and
their corresponding matching. (d) The distance plot. (e) The
delay plot.
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6
Visual Exploration of

Migration Patterns in Gull

Data

6.1 Introduction

The study of animal movement has long been of interest. Starting in
the 1990s, the availability of new technology has led to increasingly
detailed and diverse types of data relating to movement
[Rutz and Hays, 2009]. GPS-based movement tracks are currently
among themost frequently collected types of data. Becauseof its rela-
tive accuracy and high sampling rate, the GPS technology drastically
improved the ability to describe and gain new insights about animal
movement. The continuing miniaturization allows at the same time
to collect data for an increasing rangeof species and conditions [Kays
et al., 2015]. Today, animal movement tracks form one of the main
data sources when studying the mechanics of movements,
navigationalcuesanddriversofmovement, constantly leading tonew
insights on animal physiology, behavior, and demography
[Dingle, 2014]. Through those advances, ecologists are beginning to
ask novel questions about the causes of movement and its
consequences for individuals, populations, andecosystems forwhich
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formalanalysis techniquesarenotalways readilyavailable. Kayset al.
[2015] claim that interdisciplinary research between data scientists
– computer scientists, statisticians – and ecologists will be required
to develop new tools efficiently, which will eventually lead to new in-
sights and scientific breakthroughs.

Thegoal ofdata visualization is toprovide insights intodata [vanWijk,
2006]. New visualization techniques and visual encodings help users
to understand their datasets. Furthermore, visual analytics can be
used to generate knowledge from large and often complex datasets
by developing and deploying analytical and visualization techniques
[Sacha et al., 2016].

1 2

3
4

Figure 6.1: Overview of the visual analytics tool: The stopover aggregation
visualization (1) enables the user to investigate and select stop-
overs. The density map (2) shows the spatial distribution of the
selected moving entities. Within the calendar view (3) the tem-
poral distribution of the stopovers of the selected entities over
time is visualized. The list of gulls (4) shows the names and
genders of the selected entities.

To support an ecologist in her search for new knowledge, a visualiza-
tion expert needs to spend time and effort to understand the relevant
questions, data and the general ecological context of a study-system
– knowledge which has often not been acquired a priori. Ecologists
do, on theotherhand, not commonlyhaveanoverviewof theanalysis
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andvisualizationpossibilities thatarenowtechnically feasible; nordo
they know how these could help answer certain ecological research
questions. Thus, a knowledge gap between domain experts and visu-
alization designers exists [Slingsby and Dykes, 2012; vanWijk, 2006].
Explorative visualization can help fill this gap as it provides a means
for ecologists to discover new trends, to present a dataset visually,
to identify pertinent subsets, to compare the movement of individ-
uals, and to locate moving entities, among other tasks. Abstracting
such tasks helps to reason about the similarities and differences be-
tween them, to distinguish between different goals, and to further
guide data abstraction [Munzner, 2014]. Eventually, exploratory visu-
alization provides a novel analytical means that leads to new ecologi-
cal insights. In addition, it may help users build trust in their gener-
ated knowledge base [Sacha et al., 2016].

The current practice of ecologists to investigate and visualize move-
ment is by developing and using Matlab or R libraries [Slingsby and
Dykes, 2012; SlingsbyandvanLoon, 2016]. Those results areeither an-
alyzed and visualized statically or plotted on top of satellitemaps. Few
birdecologists examinedmovementdata in interactive visualizations
with multiple coordinated views, or used a Google Earth-based tool
for exploring GPS data from a bird’s eye perspective, both of which
have been of limited value [Slingsby and Dykes, 2012]. It seems that
a tight integration of different spatio-temporal views of the data, with
a flexible selection would be beneficial to ecologists to focus on data
analysis mechanisms rather than on laborious coding [Spretke et al.,
2011].

In this chapter, we present such a technique. It comprises a novel vi-
sual analytics approach to help explore animalmigration patterns in-
teractively. Our approach provides analytical and visualmeans to un-
derstanddifferentaspectsofmigration throughanaggregationat var-
ious spatial scales, with interlinked geographical maps, and views on
spatio-temporal events. Migration is ubiquitous in ecology. It is the
seasonal displacement of individuals between sites. In our approach,
we identify and aggregate stopovers. A stopover is a break within a
migratory trajectory. Functionally, stopovers are important for forag-
ing, resting, or socializingwithconspecifics, but stopovers canalsobe
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useddiagnostically to recognize differentmigration strategies: along
the coast, over the sea, or overland.

Past research on visualizing gullmigration lack an aggregation of the
trajectories [Slingsby and van Loon, 2016], or impose visual clutter
by drawing the results of the clustering as colored data points on a
map [Spretkeet al., 2011]. Our visual analytics approach remedies this
by employing a stopover aggregation visualization, a density map,
and a calendar view (see Figure 6.1). The stopover aggregation and
density map are plotted on top of interconnected, zoomable
geographic maps. The user can select stopovers, and impose
constraints on spatio-temporal properties of the selection.

We applied our approach to a dataset of 75 migrating Lesser Black-
backed Gulls (Larus fuscus), which we will henceforth denote as
’gulls’ in this chapter. We evaluated our tool by consulting an expert
user [Tory andMoller, 2005] whose expertise on birdmigration to as-
sess the strengths and weaknesses of our approach. We identified
both ecological research questions and the requirements for the vi-
sual design, andmapped them to analytical tasks that the expert user
completed. In this chapterwe use the termsmoving entities and indi-
viduals interchangeably.

Our qualitative evaluation confirms that our approach helps ecolo-
gists in their analysis of migration patterns so that they are able to
visually identify and isolategroupsof individualswithacertainmigra-
tion behavior rather than in non-visual computations. This
speedsupand fosters their analyticalworkflowbecauseourapproach
empowersecologists to focuson interpreting thedataandondevelop-
ing new questions without being distracted by coding or by algorith-
mic technicalities.

6.2 Related Work

To identify different homogeneousmovement episodes in trajectory
data, trajectoriesarecommonlysegmented, i.e. cut intoparts, accord-
ing to characteristics of the movement. Segmentation together with
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classificationorclusteringofmovementdatahelps to summarizeand
visualize large trajectory datasets. Visualization techniques formove-
ment data support users in identifying new trends within datasets.
Wesurveypast researchonvisualizationandclusteringofmovement
data from various application backgrounds to give an overview of re-
cent achievements in these fields.

Segmentation algorithms have been successfully applied to migrat-
ing geese [Alewijnse et al., 2014; Buchin et al., 2013c] and gulls
[Spretke et al., 2011] amongmany other studies [Beyer et al., 2013; Gu-
rarie et al., 2016; Lavielle, 1999; Le Corre et al., 2014; Madon and Hin-
grat, 2014; Thiebault andTremblay, 2013; Zhanget al., 2015]. These ap-
proaches segment individual trajectories into pieces of similarmove-
ments. Buchin et al. [2016] presented algorithms to summarize seg-
mentationsofa largernumberof trajectories ina flowdiagram,which
they then applied to trajectories of football players to analyze spatial
formations and plays.

To aggregatemovement data, Andrienko and Andrienko [2011] trans-
formed trajectories into aggregate flows between spatial regions in
their visual analyticsapproach. This typeofaggregationallowsgroup-
ings of essential characteristics of the movement. In their approach,
the user can interactively control the overall level of abstraction of
the visualization. Andrienko and Andrienko [2011] applied their ap-
proach to deer and stork data and to trajectories in an urban context,
where the aggregated results are visualized as flowmaps or as transi-
tionmatrices.

Density visualization is a powerful visualization technique for analyz-
ingmany trajectories. One suchexample is theworkbyWillemset al.
[2009], whichpresents amulti-scale density visualization for trajecto-
ries. They demonstrate it on vessel trajectories. The visualization of
the density fields is derived from the convolution of the dynamic ves-
sel position with a kernel that takes the speed of the movement into
account. The density fields are illuminated as height maps on top of
a heat map. Additionally, Willems et al. [2009] visualize the individ-
ual’s contribution of amoving point within the overall density.
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Scheepens et al. [2011] use a similar approach to visualize densities of
maritime trajectories, for which they apply a cascade of filtering and
selectionmechanismson topofdensitymaps. Their selectionmecha-
nisms are sensitive to the user’s role, either a domain expert or an op-
erator, and to the task at hand. An operator is usually only concerned
with events connected to his work task, such as surveillance of a par-
ticular port.

Densities of movement data do not have to be necessarily visualized
as a rastermap on top of a geographicalmap. Slingsby et al. [2008] de-
ploy hierarchical, interactive treemaps to explore spatio-temporal
movement patterns of couriers in London.

Clustering on urban data has been studied by Lu et al. [2015a,b] on
taxi data. Lu et al. [2015a] explore Origin Destination (OD) pairs as
an interactive selectionof clustered regions. Theunderlying summa-
rization uses a modified DBSCAN algorithm, which utilizes a density
computation. Lu et al. [2015b] ranked trajectories of taxi data based
on their similarity of travel time. In their visual analytics tool, they
visualized the ranking as bands over time. Before ranking the trajec-
tories, they aremapped onto the underlying street network first, and
then segmented.

Slingsby and van Loon [2016] present an exploratory visual analysis
approach for animal movement data. They applied it, as we did, on
gull data, and they devised ecological and visualization requirements
on the analytical process. Their visual encodings range from point
plots over density maps to tile maps and, thus, cover partially our vi-
sualization techniques. Thevisualanalytics softwareconsistsofacen-
tral view, a satellitemapwith an overlaid visual encoding and user in-
teractions, and two interconnected timelines: one for a sequence of
days and the other one for the times during those days. They did not,
however, consider a summary and aggregation of the gulls’ trajecto-
ries, whichwe provide and use as themain technique to interact with
the user in our study.

Spretke et al. [2011] developed a visual analytics approach for migrat-
ing seagulls. It supports interactive data exploration and enrichment
of movement data by adding attributes dynamically from existing
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ones, and incorporating weather information, such as wind and tem-
perature. They clustered the trajectories of gulls into three move-
ment states: daymigration, night migration, and stopover. They also
segmented the trajectories based on spatio-temporal characteristics
(45 minutes resting and less than two km continuous flight). Their
visualization with interconnected views lacks an abstraction for visu-
alizing clusters since Spretke et al. [2011] mapped the clustering to
only colors, and plotted the clusters as plain data points yielding vi-
sual clutter.

Kölzsch et al. [2013] reflected on the visual design of migrating birds
by exploring different visualization techniques to encode spatio-tem-
poral characteristics of migration. They related ecological research
questions to their visual design which inspired us to link our ecologi-
cal research questions to the requirements of our visual design.

6.3 ProblemDefinition andRequirement Analysis

Animal migration is an intriguing phenomenon in nature and has as
a consequence always received much attention as a research topic
in biology. It is increasingly being studied through visual and quan-
titative techniques due to the availability of tracking data in combina-
tionwithrelevantenvironmentaldata layers, see theworksbyBuchin
et al. [2013c]; Klaassen et al. [2011]; Shamoun-Baranes et al. [2011b];
Slingsby and van Loon [2016].

In our study, we focus on the interactive analysis of animal migra-
tion tracks. In this section, we lay out a number of important ecolog-
ical research questions that can be partially answered through these
means. By relating those domain research questions to analytical re-
quirements, we aim for a holistic problem analysis
[Brehmer andMunzner, 2013] of migratory animalmovement.
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6.3.1 Ecological Research Questions on Migration

Even though there is a large body of knowledge about birdmigration
[Berthold, 2001;Newton, 2008] and somecommonprinciples aregen-
erally recognized (a migrating organism would maximize its fitness
behaviorally by minimizing either energy consumption, time expen-
diture, or the risk incurred during migration) [Alerstam, 2011; Aler-
stam and Lindström, 1990; Hedenstrom, 1993]; our understanding of
underlying drivers as well as the (behavioral, ecological, and physio-
logical) mechanisms is still far from complete.

In the case of the focal species in this study (the Lesser Black-backed
Gull), for instance, exact energy budgets are unknown, the compar-
ative advantage of migration (versus overwintering in the breeding
area) is unclear, and the reason for the wide spread in overwintering
sites by individuals fromasingle colonyare alsounknown [Shamoun-
Baraneset al., 2017]. On theotherhand, someaspectsof themigration
of this species have been studied, leading, e.g., to the conclusion that
itminimizes the energetic costs rather than time spent duringmigra-
tion [Klaassen et al., 2011].

In this study, we explore howan interactive analysis of trajectory data
can help us gain more insight into the possible role of individual dif-
ferences, sex, and time-dependent conditions (such as weather pat-
terns or ephemeral food resources) as well as the characteristics of
stopoversitesduringmigration. Theecologicalquestions thatwecon-
sider are listed in Table 6.1. These questions have been designed to
cover insights into a summary of stopovers and the exploration of the
relation between trajectories and the actual movement.

Questions E1 to E3 focus on the relation between attributes of the
movement tracks (which can be considered as predictor variables)
and migration decisions (which can be considered as response vari-
ables). However, both the predictor and the response variables have
not been operationalized; therefore, inferential testing through, e.g.,
multiple regression is yet not feasible. Rather, an explorative analysis
is required to help to define those variables.
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Questions E4 to E6 deal with the uniqueness of stopover sites. For
these questions, the reference (e.g., direct surroundings, other indi-
viduals) is not clearly defined; hence, part of the challenge here is to
discover the type and scale of reference that is meaningful.

Table 6.1: Overview of the ecological research questions that we explore in
our visual analytics tool for migration.

Ecological Research Question

E1 How do individuals’ differences, sex, and temporal conditions
relate to the route choice?

E2 How do individuals’ differences, sex, and temporal conditions
relate to the choice of the stopover site?

E3 How do individuals’ differences, sex, and temporal conditions
relate to the timing of stopping and commencing to migrate?

E4 What is special about the places to where migrating individ-
uals move relative to the direct surroundings (at the same
time/within the same time window)?

E5 What is special about the places to where migrating individ-
uals move relative to the place where they come from (at
the same time/within same time window)?

E6 What is special about the places to where migrating in-
dividuals move relative to other individuals (at the same
time/within same time window)?

6.3.2 Requirements for Analysis Tasks

We now map these ecological research questions to more abstracts
requirements that our approach needs to support. These
requirements are listed in Table 6.2 and help in abstracting generic
tasks fromthespatio-temporalcharacteristicsofmigratory trajectory
data.

In our approach, we want to identify spatial patterns (T1). This re-
quirement covers a comprehensive visualizationof all trajectories, al-
lowing the user to understand and compare spatial patterns inmigra-
tion (E1) acrossdifferent scales. Agroupingofgullswithsimilarmove-
ments provides insights into different categories ofmigratory behav-
iors (E6). A sequence of stops from an origin to a destination (E5) can
be expressed as such a grouping. The behavior of individuals should
be distinguishable fromoverall group patterns to investigate how the
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migration strategy of an individual deviates from the group
movements (E6).

We want to identify temporal patterns (T2) across several scales,
ranging fromday/night patterns over a period of days to seasonal pat-
terns. A visualization should allow to specify an episode to constrain
the selection to lie within a start and end date (E4, E5, E6).

Another analytical requirement is to identify stopovers (T3). This re-
quirement deals with a more aggregate view of the data to identify
important or often used places (E2) where migrating gulls come to-
gether (E6). Stopovers can also be considered at the level of an indi-
vidual to visualize its migration strategy on top of an exchangeable
map, such as a geographic or a topographic map, to investigate the
surroundings of a stopover (E4) with different visual cues. A visual-
ization should, furthermore, provide insight into the proximity of the
stopover. Statistics ona stopoverhelpusunderstand thenatureof the
stopover (E2).

Within our analytical framework, we want to compare groups and
individuals (T4). This requirement concerns grouping individuals
that show similar migration strategies (E1), e.g., travel mostly along a
coastline, over land, orover sea. Avisualizationshouldenableavisual
linkage between these groups (E5), but also the comparison of one or
more individuals with a group (E6). Subgroups can be selected by the
user individually or by characteristics of the gulls, such as gender (E1,
E2, E3).

Table 6.2: Summary of the requirements for our visual analytics tool.

Requirements for the Visual Analysis

T1 Identify spatial patterns.
T2 Identify temporal patterns.
T3 Identify stopovers.
T4 Compare groups and individuals.
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6.4 Visual Analytics Approach

Ourvisual analytics approach (seeFigure6.1) enablesusers toexplore
migration patterns interactively. We identify stopovers, and aggre-
gate them in a visualization, so that the user can investigate and in-
teract with stopovers. The tool allows the user to select a sequence of
stopovers from an origin to a destination. Such a selection imposes
a direction of movement for moving entities within amigration. The
selected group ofmoving entities is rendered in the densitymap, the
calendar view, and the list of gulls. In the density map, the spatial
usage of the selected gulls is shown while the calendar displays the
counts of stopovers per day of selected or all stopovers. The
geographic maps for the density map and the stopover aggregation
are interconnected.

1. idle 2. stops 3. triangulate 4. aggregate ...

Figure 6.2: The computational process to aggregate stopovers consists of
four phases: (1) the identification of idle points; (2) the com-
putation of stops; (3) the triangulation of stops; (4) the aggrega-
tion of stopovers on various scales. The first two phases identify
stopovers (T3). The resulting triangulation from phase (3) is used
in phase (4) to compute summaries on different spatial scales
from fine to coarse (T1).

Our visual analytics approach is implemented as an interactive web-
site1 so that it is widely accessible to researchers whowant to explore
migration patterns.

By visually exploring a dataset, trust into the knowledge base of the
dataset can be built [Sacha et al., 2016], and it allows ecologists to fo-

1http://www.win.tue.nl/~kbuchin/proj/gullmigration

http://www.win.tue.nl/~kbuchin/proj/gullmigration
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cus on data analysis instead of implementing source code to isolate
groups with differentmigration behavior [Spretke et al., 2011].

In this section, wewill first discuss the algorithmic techniqueswhich
underlie our visual analytics tool; then, we will relate these to the re-
quirements of our tool. Finally, we will link the requirements to our
visualization design.

6.4.1 Computational Methods

To allow a clustering across different spatial scales (T1), we have ap-
plied a single-linkage agglomerative clustering to aggregate
stopovers. Since gulls have frequent stops along their migration
routes which are heterogeneous in duration and local detours, we
cannot readily apply stopover criteria used in existing algorithms
[Buchin et al., 2013c] for segmenting the trajectories. Our algorithm
supports two parameters to facilitate flexible stopover definitions.
These parameters are thresholds on the speed of a point to its succes-
sor within a trajectory, defaulted to 3.5 km

h , and amaximum distance
between two moving entities, defaulted to 500meters. The distance
threshold determines whether two points from distinct trajectories
are within the same stopover. Our chosen defaults provide sensible
parameters to describe stopover criteria for gulls.

In Figure6.2, we show the aggregation algorithm thatweemployed; it
has four phases. The first two phases focus on identifying stopovers
(T3), while phases (3) and (4) exploit spatio-temporal characteristics
ofmigration (T1, T2). The first three phases are executed sequentially.
After that, phase four is executed for different spatial scales. We will
discuss each phase inmore detail in the following.

First, we classify points as idle if the speed of a point with respect to
the previous point of the trajectory of an individual is below the given
threshold. This allows us to distinguish betweenmovement and non-
movement for an individual.

Next, we compute stopovers (T3) by employing Ritter’s Bounding
Sphere algorithm [Ritter, 1990] onto the idle points and thresholding
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the distance between two idle points. A stop is the smallest disk con-
taining idle points (Figure 6.2 shows five idle points that together de-
fine a stop). Ritter’s algorithm, with a running time of O(nd) in gen-
eral for n points in d dimensions, is exceptionally efficient with a lin-
ear running time in our case because we compute the sphere in the
plane and n points at a stop. A drawback of this algorithm is that the
obtained disk is approximately 5% larger than the optimalminimum-
radiuscircle. By identifying thesestops,weareable torepresent them
as a visual abstraction.

In the third phase, we take the centers of all disks, which represent
stopovers of idle points, and compute a Delaunay triangulation
[de Berg et al., 2008] on those centers. Because a Delaunay triangu-
lation maximizes the minimum angle within the triangulation, i.e. it
avoids narrow triangles, it is a suitablemeans to compute all possible
edges between stopovers.

Finally, to aggregate the stops, we perform a single-linkage cluster-
ing by applying Kruskal’s algorithm [Kruskal, 1956] on the Delaunay
triangulation from a fine to a coarse scale (T1), where the distances
between the corresponding stops – disks – serve as edgeweights. We
spananedge between thecentersof the smallest enclosingballs at
 and  for only themoving entities incident to this edge. Weexclude
in this computation those individualswhoarenot traveling along that
edge . This step allows us to construct a summary of the stopovers
that reduces visual clutter acrossmultiple spatial scales.

The density map is dynamically computed on a set of gulls, and al-
lows comparisons between different groups (T4). The computation
of a density map consists of three steps in our approach: first, we in-
terpolate the data linearly for each individual, using a sample reso-
lution of 15 minutes to bypass irregular sample intervals. Then, we
bin the counts for each individual on a grid of all possible locations.
The counts of a cell are the occurrences of all moving entities within
that grid cell. Eventually, we discretize the binned values to five quin-
tiles (seeFigure6.3) andcompute thecontour linesof thedensitymap.
Such a density map allows users to perceive the distribution and the
spatial extent of the trajectories (T1).
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Figure 6.3: Color scale for the quintiles in the density map.

Figure 6.4: Activity at night of gull Sanne. The coloring of the individual gull,
Sanne, shows considerable movement at night, in black, during
the migration.

As we are interested in investigating day and night patterns of trajec-
tories (T2), we need to classify subtrajectories as day or nighttime. To
determinewhether a data point of a trajectory, given as longitude, lat-
itude, and a time stamp, occurs during day, night, or twilight, weused
themethod described in Forsythe et al. [1995]. This method is robust
across the latitude, and the computational error ranges from a max-
imum of one minute near the equator up to two minutes near 60 de-
grees north latitude.

6.4.2 Visualization Techniques

The stopover aggregation (T3) provides an overview of the stopovers
and the segmented trajectories, moving among the stopovers. We
represent each stopover as a disk, of which the radii encode the quan-
tiles on the number of trajectories at the stopover. This encoding al-
lows us to visualize the spatial distribution of the stops within a stop-
over. The selected stopovers have an orange halo, and the number
indicates the sequential ordering of the stopovers from the origin to
the destination (see Figure 6.1). Edges are colored in a light shade of
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gray per default without any selection. The more moving entities of
the selection travel along an edge, the stronger it will be saturated in
a darker shade of gray. Our encoding enables users to have a visually
salient selection.

To change the spatial layout of the stopover aggregation from coarse-
grained to fine-grained (T1), we allow the user to select an aggrega-
tion level (see phase four in Section 6.4.1) by providing a slider, which
is only visible if no selection has been made. The map type can be
changed to a satellite view (see Figure 6.4) to investigate the vicinity
of the stopover (T3), as it is provided by other state-of-the-artmap ser-
vices.

The density map provides an overview of the spatial usage of a set of
movingentitiesor all of them(T1). Weensure that individual trajecto-
ries that deviate substantially fromothers are clearly visible by using
an appropriate kernel size. This way, the density map also supports
taskT4. As for thestopoveraggregation, themap typecanbechanged
to a satellite view as well (T3).

To investigate the migration strategy of an individual, we provide a
trajectory visualization. The trajectory is drawn on top of the density
map (Figure6.4). Day, night, and twilight are color-coded in light blue,
black, and purple (T2), respectively. This color-coding allows a user
to see whether a gull travels long or short periods on a particular day
and also how many days the entire journey takes. The text labels on
top of the trajectory show the stopovers of an individual and can be
turned off and on. They indicate the sequence and the direction of
themovement for an individual.

The calendar view is shown when a stopover, a set of gulls, or an in-
dividual gull has been selected (T4). It provides information on the
distribution of stops per day and which gulls stopped on a specific
day (T2). Such temporal information can be encoded in various ways,
suchasa timelineorapunchcardchart. Acalendarhas theadvantage
of showing multiple years at the same time. Our tool allows users to
toggle between showing the distribution at the selected stopovers or
at all stopovers. The number of stops are visualized in the same sat-
urated scale of blue as the one used in the stopover aggregation. Se-
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lecting a time framewithin the calendarhelps to exploit temporal pat-
terns (T2), and such a selection is visualized as a contour in the same
shade of orange as the one used for the selection in the stopover ag-
gregation (see Figure 6.6).

After evaluating themetadata of theuseddataset [Stienenet al., 2016],
we focused on visualizing only the gulls’ names and gender in addi-
tion to their trajectories because the ancillary data did not provide
anypertinent statistics (categorical ornumerical) beyondgenderand
name. Thegullswithin theselectionaresortedalphabeticallyby their
names of the gulls. Males’ names are colored in blue and females
in red. Subselections of previous selections are supported in various
ways (T4).

6.5 Exploratory Analysis Process

Our visual analytics tool provides two ways to explore migration: an-
alyzingmigration patterns at the level of stopovers, and investigating
the spatio-temporal characteristics of a singlemoving entity. Within
the more comprehensive analytical process of exploring stopovers,
we also support the inspection of an individual at any time.

The analysis process for exploring stopovers is the following:

1. Spot interesting stopovers
2. Select a promising stopover
3. Investigate the selected stopover(s)
4. Refine the selected stopover(s)
5. Inspect the individual trajectories of the resulting set

Users start by attaining a general overview of the dataset by zoom-
ing, panning, and inspecting the interconnected maps. By hovering
over interesting stopovers (see Figure 6.5(a)), users gain insight on
the structure and the relevance of the stopovers (step 1).

Next, users select a stopoverof their choosingbyclickingon it (step2).
This immediately updates all other views: the densitymap, the calen-
dar, and the list of gulls.
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(a) (b)

Figure 6.5: Hovering over a stopover (a) shows the amount of gulls at that
stopover and their genders as a tooltip. Within the calendar (b),
a tooltip shows the number of stops at this day for the selection
and the names of the gulls stopping at that day.

Subsequently, users explore thenatureof the selection (step 3). In the
calendar view, users can toggle between showing the
counts of all stopovers or just the selected ones. By hovering a day in
the calendar, a tooltip (Figure 6.5(b)) is shown with the names of the
gulls stopping at that day. Alternatively, the inspection process on a
single gull can help to gain insights here, too (step 5).

The current selection of stopover(s) may be incomplete or inconclu-
sive, so users can refine the selected stopover(s) (step 4). By adding
another stopover to the selection, users define a sequence from an
origin, the first selected stopover, to a destination, the most recently
selected stopover. In the stopover aggregation (2) of Figure 6.1, we
show a stopover sequence from Spain/Portugal to the Netherlands/-
Belgium. A deselection of stopovers is supported, and restricting the
selection to a specific gender is supported too so that users can inves-
tigate gender-specific differences (see Figure 6.7). By using the slider
for the aggregation level, users are able to adjust the granularity of
the stopover aggregation.

Additionally, users can define a time range wherein the sequence of
stopovers must lie (see Figure 6.6). This imposes a temporal restric-
tion in which each individual within the selection must have at least
onesequenceof stopoversmatching to theselectionsequence, a stop-
over at the origin after or during the start date of the time frame, and
a stopover at the destination before or during the enddate of the time
frame. On a single stopover selection, the origin and the destination
then coincide.

It is also possible to define a subgroupmanually from the current se-
lected entities.
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Figure 6.6: A selected time range from October to November within the
calendar view at a stopover.

The users apply steps 3 and 4 until they are satisfied with their find-
ings. Eventually they discern the individual trajectories from the re-
sult set of moving entities (step 5).

Theanalytical process to inspect a trajectory of a singlemovingentity
is defined by selecting the individual first, and then investigating the
movements of the trajectory on top of the density map. The visual
encoding can be altered to exploit geographical characteristics and
stopovers along the trajectory.

6.6 Evaluation

To assess the effectiveness of our visual analytics tool in terms of
strengthsandweaknesses,weapplied it toadatasetofmigratinggulls
over a period of three years and evaluated the visual analytics tool by
interviewing an expert user in a two-hour session.

Our domain expert (one of the co-authors) has a background in ecol-
ogy who has studied bird migration in the past. He had seen a previ-
ous prototype of our approach, but he had not experimentedwith the
visual analytics tool nor had he studied the dataset we used before-
hand.

We conducted the evaluation with the expert user in three phases.
First, we gave instructions and explanations on the visual design, the
user interaction, the computationof stopovers, and the analytical fea-
tures. This phase took 25 minutes. After that, we dealt with specific
analytical questions on the dataset. We developed a catalog of ana-
lytical tasks, see Table 6.3, that covers different facets of the tool and
links ecological research questionswith the requirements for our ap-
proach, seeTable6.1 and6.2 inSection6.3. In the finalphase,weasked
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about applying our tool on an area of interest and thenwe asked ques-
tions about the usability of the tool. Those reflections will serve as a
discussion of our approach.

6.6.1 Dataset of Migrating Gulls

The lesserblack-backedgull is an interestingandchallengingspecies
to analyze since it has a broad diet and can feed on many resources
(both terrestrial and marine), can fly efficiently in many different
weather conditions, and can rest on both land and sea. Consequently,
migration can take place across almost any landscape, and foraging
is possible almost anywhere along its migration route. This species
generally adopts a fly-forage migration strategy which avoids carry-
ing loads and instead switches frequently between flying and feeding
[Klaassen et al., 2011].

We applied our visual analytics tool to a comprehensive dataset col-
lected by Stienen et al. [2016] to investigate our ecological research
questions about the lesser-black backed gull. Stienen et al. [2016] col-
lected almost 2.5 million data points from 101 gulls. This dataset is
unique with respect to other gull datasets since such a large number
of gulls have not been tracked over three years at such a fine scale
resolution thus far. All of the gulls in the dataset have been tracked
for at least ten days, and more than half of the gulls had locations
formore than 100 days. This dataset contains 75 lesser black-backed
gulls aswell as 26herring gulls. Since theherring gulls stayed at their
breeding site, we have focused on the lesser black-backed gulls in
our study. Their breeding sites were at the Belgian and Dutch coast,
and during autumn the lesser black-backed gulls migrated to south-
ern Spain, Portugal, and northern Africa. Further details about the
dataset and the ecological studies that it supports and are provided in
Stienen et al. [2016].
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6.6.2 Expert User Evaluation

All analytical tasks (see Table 6.3) were completed successfully. The
ecologist completed most of the tasks within two to five minutes.
However, taskA5tooknineminutes in total since this taskreliedheav-
ily on several inspection processes and the expert user’s having to
contemplateonthemeaningof“interestingmovementsduringnight-
time”.

We discuss the analytical tasks sequentially from top to bottom and
elaborate on the differences in solving similar tasks as well.

To accomplish A1, the expert user first inspected different aggrega-
tion levels (T1) and zoomed in at different levels within the stopover
aggregation visualization. Next, he investigated the whole map by
hovering over several stopovers (E4, T3). Eventually, he identified
the stopover in northern Spain and Portugal as a stopover withmany
gulls.

TasksA3 andA7 are similar tasks toA1, but the expert user didnot use
the aggregation slider. For A3, the user browsed over a couple stop-
overs (E4), and spotted three stopovers in Brittany (northern France)
where only female gulls stayed (E2, T4). The expert user instantly
recalled the stopovers from A3 in A7, and started to hover over sev-
eral stopovers (E2, E4) until he found suitable stopovers in Brittany,
England, and other parts of France, where more females than males
stopped. He implicitly assumed theremight be stopswhere there are
moremales than females (compare Figure 6.7).

To solve task A2, the user immediately selected the singleton stop-
over in England and noted that there aremultiple stopovers in north-
ernAfrica (E4). He next used the slider for the aggregation level after
that until there was only one stopover in northern Africa left and se-
lected this one as a destination (E5). Subsequently, the domain expert
inspected the individual trajectories from the selection using this
route (T1, T4).

Task A4 differs from task A2 by adding a temporal constraint (E3, T2)
on an origin-destination selection (E5). The domain expert wanted to
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(a) (b)

Figure 6.7: Density maps for females (a) and males (b) reveal that females
stop more often in Brittany, the most northwestern part of
France, than males and that males tend to take larger detours
during migration along the sea.

use the aggregation slider similarly as in A2 for Brittany, but he did
not find a unique way because, if the clustering is too coarse, there is
no stopover in England, and, if it is too fine, there aremany stopovers
in Brittany. The expert user accepted this trade-off and selected a se-
quence fromEngland to the largest stopover in Brittany (T1). Next, he
restricted the time framewithin the calendar appropriately (T2), enu-
merated the gulls Harry and Sanne, and expressed that he wanted to
select a region, Brittany as such, because he thought that he other-
wisemightmiss some birds from other stopovers in Brittany.

In task A8, he again shared the same desire to be able to select by re-
gion after having selected yet another origin-destination pair, over
an intermediate stopover in this case. Thus, a weakness of our ap-
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(a) (b)

Figure 6.8: Overview of the movements of gulls (a) Angel and (b) Eric. Both
show considerable movement at night in France, Spain, and Por-
tugal.

proach is that our visual analytics tool does not support a selection
by region.

In task A5, finding a gull with interesting movements during night-
time (E1), theuser first investigated thecomplete list of gulls byhover-
ingover them(T4). Hewas surprised thathe sometimescouldnot see
long trajectories. After discovering that half of the gulls stayed at the
breeding spot, he wanted to select all of the gulls from all stopovers
excluding the breeding spot (E5, T4) to investigate their night move-
ments outside of the breeding spot since he presumed that thosemo-
tions at the breeding spot are probably due to human interference.
Hemoved further throughthe listofgulls, noting that selectingastop-
over (T3) might be more effective, but then he found the gull Angel
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who had a suitable long trajectory (E1) (see Figure 6.8). Then, he de-
fined “interesting” in this context as distinctively different patterns
in travel duration, speed, or trajectory shape between a series of con-
secutive days and nights (E5).

He assumed implicitly that gulls could float on the sea and bemoved
by tidal forces, as known from the literature [Shamoun-Baranes et al.,
2011b; Slingsby and van Loon, 2016]. Therefore, these patterns were
not considered as interesting per se; only when occurring at a differ-
ent rate during day and night.

We classified the locations of a trajectory based on the time stamps
and the corresponding geographical position as twilight, daytime, or
nighttime (seeSection6.4.1), andvisualized this on the trajectory. The
visualization tool, therefore, does not provide direct information
about the actual time beyond the day and night time periods for a
given date. In order to compare trajectory lengths between day and
night straightforwardly, thedomainexpert sought for periods around
the equinox since daytime and nighttime are then almost equally dis-
tributed (based on this the ecologist did, e.g., skip a stopover of Angel
in November since then the nighttime is longer). He, subsequently,
switched to another individual, Eric, and zoomed out to get an over-
view of Eric’s overall movements (E1). After some panning and zoom-
ing,he found it interesting thatEric, asmanyothers, traveledasmuch
during the day as during the night. He hypothesized that theremight
always be light at certain landmarks available to help the gulls navi-
gate.

While Angel’s and Eric’s trajectories (see Figure 6.8) do not show
much difference between the lengths of day/night stretches, there
are enormous differences in the lengths of the tracks between An-
gel and Eric. This poses the question whether Angel was coping with
adverse wind-conditions (during the segment with shorter distances
per day/night) while Eric possibly had strong wind support.

In task A6, the user investigated the coastline of the Atlantic ocean,
and selected the stopover covering this area in southern France. Af-
ter wonderingwhether hemissed some gulls within the selection, he
inspected the list of individual gulls (E6, T4). The domain expert dis-
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tinguished between gulls traveling up north at the coastline, Anke,
Sjarel, and Hilbran, southwards, Roxanne and Jasmin (partially), in
both directions, Lea, or not all, Joke and Ian. To investigate the mi-
gration of the gull Marie, a partial coastline migration, he needed to
zoom in and out further to obtain a higher resolution for the text la-
bels of the stopovers. He wondered whether he had covered all of
them, andhehovered and selectedother stopovers southof theprevi-
ous selection (T3). Eventually, he noticed that those gulls are a subset
of the previously analyzed gulls.

(a) (b)

Figure 6.9: Trajectory visualization for (a) gull Annelies, who is migrating in
a clockwise two-way migration, and (b) gull Ella, who visits Eng-
land before migrating south (anticlockwise).

Tasks A9 and A10 dealt withmigration strategies at specific locations
(E1), Madrid, and Gibraltar. To obtain a more detailed aggregation,
the domain expert first used the slider in task A9. Then, he noted
movements within the density map ofMadrid, and selected the stop-
over atMadrid. He enumerated Joke, Lea, andMichelle, and noticed
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that only females visited the stopover (E2, T4). The expert user then
defined a migration strategy for a group or an individual by identify-
ing the most southern stopover during their/its migration (E5). By
inspecting the individual trajectories, he traced that Madrid was the
most southern stopover for Joke during the migration. Lea, in con-
trast, visited a stopover south of Madrid, and traveled a week later
than Jokehad. The ecologist noticed instantly thatMichelle, whohad
been recorded for two years and pursued different migration strate-
gies. At the stopover inGibraltar (A10), theexpertuser switchedoften
between Annelies’ and Ella’s trajectories, the two gulls who stopped
in Gibraltar, since he was interested whether both were visiting Eng-
land (E5). He summarized that Annelies migrates in a clockwise two-
way migration (E1), and Ella whomigrates a year later than Annelies,
visits England before migrating south (in an anticlockwise two-way
migration) (see Figure 6.9). The ecologist used date informationwith-
in the green stopover of an individual trajectory (T2) to accomplish
this. He remarked that both pursued a coastlinemigration, andhe as-
sumed that gulls learn to shortcut during migration through experi-
encesbasedon learned landmarksandresources frompreviousvisits
at the coastline. In ecology, it is commonly believed that bird species
gain a better navigation capacity over the years throughpast learning
experiences. Therefore, older birds are assumed to have better navi-
gation abilities.

The final analytical task A11 of describing themigration pattern over
Francewas driven by theuser’s interest inwhether a stopover is used
during a spring or autumnmigration. He reflected first on themean-
ing of a migration pattern and defined it as howmany stops the gulls
take (E2) and at what times they stop (E3, T3). To accomplish this task,
heselected the largest stopover inBrittanyandanalyzed the temporal
distribution of the selection (T2) in the calendar view by toggling be-
tween showing the distribution at all stopovers or at this selected one.
After investigating someother stopovers (E4), the domain expert con-
cluded that themajority of stopovers in France is used during spring
migration, including the large stopover in Brittany, and seldom dur-
ing autumnmigration. He found this fact interesting because he had
previously assumed that the gulls would use the same stopovers in
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(a) (b)

Figure 6.10: Stopovers in the calendar view for all gulls visiting England (a)
at the stopover in England and (b) at all stopovers.

both directions.

6.6.3 Reflections

After the task-oriented questions, we asked the expert user to apply
the visual analytics tool to an area inwhich he is interested. He chose
the stopover in England because he wanted to know whether the vis-
its to England were before, during, or after the breeding season (E2).
He zoomed in on the area around England and analyzed the move-
ments within the density map (E1). By using the aggregation slider,
he obtained the finest resolution of the clustering. Next, by toggling
between the temporal distribution at all stopovers and at the selected
stopover, it became clear that the gulls visited England after breed-
ing (E2), as shown in Figure 6.10. The ecologist was surprised that
the gulls had visited England mainly in 2014. He hypothesized that
this fact might be weather-related and/or dependent on wind condi-
tions (E5). Using a temporal restriction from mid-July to September,
he found that the gulls Harry, Jules, and Sanne were regular visitors
toEngland. Hewas surprised that thesegulls had visitedEngland that
early (E3). Theecologistwasalso interested in investigating thediffer-
ences among the entities (E6) during two time range selections. He
used the tooltips in the calendar viewheavily to perform this compar-
ison.

Afterwards, we asked the ecologist to elaborate upon his reasoning
behind the selections. Regarding origin-destination selections, he
would not select more than three stopovers at the same time. He
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would like to be able to select by region only at a very aggregate level.
In particular, a gridded map to select areas of interest, such as cities
or agricultural regions,wouldbebeneficial to theexpert user. This in-
dicates that a hierarchical clustering, as we employed it, is crucial to
aggregating stopovers dynamically on different spatial scales.

The time restriction within the calendar view has been used by the
expert user to isolate yearly cycles, and this feature enabled him to
identity pre-, post-, and peribreeding visits in this way.

Then, we asked him to outline his workflow after finding something
of interest in our tool, and to contemplate on the purpose of our ap-
proach. The expert user saw our approach as “a visual data query-
ing tool” to generate subsets of the dataset. He would select individ-
uals showing a certain behavior, and look at their space-time usage
after finding something of interest. Subsequently, hewould continue
his research by computing somemetrics, correlations, and statistics
on the selected individuals in R to test a hypothesis on these groups.
This confirms that our approachhelps ecologists to visually and inter-
actively explore and identify migration patterns before they proceed
with non-visual analytical tasks.

By exploiting spatio-temporal relations between stopover sites, show-
ing characteristics of a particular stopover, and visualizing
spatio-temporalpropertiesof an individual’s trajectory inour tool,we
enhance such analytical tasks for ecologists from manually extrac-
tion through custom prototyping – which would consume several
hours – to a visualuser interaction that takes a coupleofminutes. Fur-
thermore, ecologists can identify individuals who share a certainmi-
gration strategy, and they also infer migration routes of individuals
[Shamoun-Baranes et al., 2017] at a selected stopover site. Hence, our
approach enables ecologists to visualize movement datasets with
manymovement tracks as well as individuals in the trajectory aggre-
gation and thus speedsup the inspectionprocess of discovering inter-
esting stopover sites, individuals, or tracks drastically.
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6.7 Conclusions

This study presents a novel approach to visually explore migratory
trajectorydata. Wecomputedanaggregationof stopovers fromthose
trajectories alongwith themovementsbetween themindifferent spa-
tial scales, and visualized it interactively together with a densitymap
and a calendar view. To investigate the tracks interactively, we enable
users to select stopovers, and to add restrictions on spatio-temporal
propertiesof the selection. Byapplyingourapproach toadataset of 75
migrating Lesser Black-backedGulls and by evaluating our approach
with an expert user, we validated our visual analytics tool.

Our findings show that this exploratory visual analytics tool supports
ecologists to investigate research questions onmigration interactive-
ly. Our tool especially enhances the identification of (groups of) indi-
viduals exhibiting similar spatio-temporalmigratory behavior, and it,
additionally, facilitates the discovery of stopover sites with environ-
mentally conditions which stand out.

Since we used a single criterion for all stopover sites and individu-
als in our clustering, we think it is worthwhile to investigate varying
rules per individual and per region. This would enhance the flexibil-
ity in the stopover aggregation.

As part of futurework, we plan to integrate environmental data, such
as information on land use, weather conditions (primarily wind), sea
currents and daylight, to facilitate the spatial exploration in the con-
text of relevant variables.
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Conclusion

Theminiaturizationof trackingdevices, an increase in their accuracy,
and cheaper production costs of those sensors have led to a rise in
collections of movement data. The development of new analytical
toolinghasnot kept pacewith these ongoing trends of trackingmove-
ment.

Understanding the drivers behindmovement is the ultimate goal for
movement analysts. Many researchers from various fields contrib-
uted to computational movement analysis through interdisciplinary
collaborations to analyze movement by automated means [Demšar
et al., 2015].

Thecontributionsof this thesisare in linewith those interdisciplinary
advances. We first elaborated on the methodological gap between
algorithms and visualization in the analysis of movement. Then, we
explored how the interplay between geometric algorithms and visual
analytics can be enhanced in the analysis. By combining algorithms
and visualizations into integrated approaches, as in our visual analyt-
ics tools, we showed that algorithms and visualization complement
each other in the analysis of movement.
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7.1 Contributions

Werevisit this thesis’scontributions in this section. Westate foreach
chapter open problems and future work.

In Chapter 2, we gave an overview of existing approaches in computa-
tional movement analysis as well as in the visualization of trajectory
data. Our typology helps researchers to become aware of technolo-
gies and methods outside of their specialization to create new inno-
vative tools and by that closing the semantic gap between trajectory
data and concepts onmovement that an analysts wants to investigate
[Laube, 2015].

Our second contribution, described in Chapter 3, concerns theoret-
ical results on the computational complexity of trajectory analysis.
Assuming the Strong Exponential Time Hypothesis, we proved two
lower bounds: that a simplification cannot be computed in subqua-
dratic time for polygonal curves with n points that lie in Ω(logn) di-
mensions; and that we cannot compute the Fréchet distance for k
curves, each with n points, in O(nk−ϵ) time for any ϵ > 0. In our sur-
vey of computational problems onmovement data, we stated known
lower and upper bounds. It is worth to note that there are no lower
bounds known to us for dynamic time warping and the Edit distance
with k curves. Furthermore, it would be interesting to investigate
whether a simplification can be computed in subquadratic time for
fixed dimensions, such as R2, which has both practical and theoreti-
cal ramifications.

Then, we studied a novel formulation of the simplification problem
in Chapter 4: progressive simplification, which is a series of simplifi-
cations that are consistent across different scales. A progressive sim-
plificationmakes it possible to zoom in and zoomout of an interactive
mapwithout unnecessary flicker. Weproposed the first algorithm to
compute aminimum-complexity simplification progressively which
runs inO(n3m) time form scales and an input curvewith n points. For
continuous scales, our algorithm runs inO(n5) time. Our second con-
tribution in Chapter 4 is a new representation of shortcut graphs that
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applies toanysimplificationalgorithmusingshortcuts. Weproposed
analgorithm to compute theerror for all shortcuts inO(n2 logn) time,
which is an improvement over O(n3) time, and we devised a
compressed shortcut graph that, under reasonable assumptions, al-
lows finding a shortest path inO(n logn) time. It would be interesting
to apply these representations in a non-progressive setting and fur-
ther evaluate them experimentally. Moreover, it is beneficial to in-
vestigate a lower bound to this type of simplification and to explore
whether amore efficient algorithm can be devised.

In Chapter 5, we presented a visual analytics tool for exploring inter-
action events between two (or three) trajectories. By computing an
alignment, we identify delayed responses which we used to visualize
action-reaction patterns. In our delay space visualization, we were
limited to two trajectories becauseweuse each trajectory on one axis.
Thus, we need novel visualization techniques that work for multiple
trajectories. Even visualizing amatching amongmultiple trajectories
is a challenging task because an ’edge’ is spanned among multiple
individuals. Furthermore, it remains a challenging task to compute
such alignments among k individuals in O(nk−ϵ) time for any ϵ since
we expect that most of the commonly used alignment methods have
such a lower bound. Developing new approximation schemes for
alignments among k individuals would be of interest from an algo-
rithmic perspective and fruitful for applications that analyze interac-
tion in large groups of trajectories. Visualizing the resulting align-
ments among many individuals continues to be a challenging prob-
lem.

Our final contribution of this thesis (see Chapter 6) is an exploratory
visual analytics approach to investigatemigration patterns of animal
tracking data interactively. We have seen that segmenting, cluster-
ing, and aggregating trajectory data help eliminating visual clutter
and that such aggregations can serve as a beneficialmeans for analyz-
ing migration routes interactively. Our qualitative evaluation, by ap-
plying our approach to a dataset of 75 migratory lesser black-backed
gulls and by consulting an expert user, suggests that our visual ana-
lytics tool empowers ecologists to be able to focus on visual data ex-
ploration instead of laborious non-visual prototyping. As we stated
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in Chapter 6, it is beneficial to integrate environmental data so that
users can explore the proximity of migration routes. Moreover, it
would be interesting to aggregate stopovers with more flexibility to
tailor our aggregation to specific spatio-temporal properties and to
visualize such stopovers for instances as regions. To date, clustering
algorithms formovementdatausemostly spatio-temporalproperties
to aggregate subtrajectories. This presents an opportunity to investi-
gate how integrating environmental data into the clustering compu-
tation can improve the clustering results.

7.2 Looking Forward

Wenow reflect on how our contributionsmay influence the analysis
of movement data as a whole and what themes are beyond the scope
of this thesis.

In the context of this thesis, we focusedon trajectorydata in theplane.
Researchers increasingly collect data from multiple sensors, in ad-
dition to location-based trajectory data, to integrate context and to
describe the underlying cues of the movement more precisely. The
computational approaches of this thesis can be extended and applied
tomultidimensional trajectories by adapting the corresponding sim-
ilarity measures. Visualizing suchmultidimensional datasets is chal-
lenging because it considerably widens the design space for present-
ing and exploiting the relationships between multidimensional sen-
sordata. For instance, linkingandbrushingof two-dimensional views
that exploit the causal links between attributes of sensor data might
be of help. Another possibility would be to investigate how three-di-
mensional visualizations canbeused in ameaningfulway since there
are trade-offs in visualizing data in three dimensions versus two di-
mensions [Munzner, 2014]. Designing and exploring such visualiza-
tions, however, lay beyond the scope of this thesis.

Formovement analysis, we have seen that “the whole is greater than
the sum of its parts”. Enhancing the interplay between algorithms
and visualization allows analysts to interpret their datasets as
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integrated approaches. Visualizations are essential to understand
how an algorithm works on datasets. Given a dataset, an algorithm
is necessary to transform and to visualize data. A knowledge gap and
an interest gap usually exist between a visualization researcher and
another (computer) scientist according to vanWijk [2006]. Typically,
knowing only the basics of the other field(s) is not enough to advance
or contribute to the other area. Thus, to evolve computational meth-
ods for movement analysis holistically, we need to foster intradisci-
plinary advances, as in this thesis. Furthermore, intra- and interdis-
ciplinary advances are essential in closing the semantic gap between
the low-level tracking data and the high-level concepts that analysts
’speak’ and understand [Laube, 2015]. This thesis fosters such intra-
disciplinary advances, and the contributions we made here demon-
strate the benefits of doing so.

Wehaveseen in this thesis thatdisciplinesbenefit fromtheexchange
of concepts and ideas between them. Enriching knowledge among
disciplinesallowsresearchers to investigateawiderrangeof research
questions and to ask more diverse research questions on the causal
links between an individual, its movement path, its drivers, and its
proximity. Therefore, it is interesting to askhowcommonknowledge
ofmovement analysis can be defined and taught amongmultiple dis-
ciplines. For instance, in recent years, it has becomepopular to teach
computational and programming basics to non-computer scientists
as “software carpentry”. Another example is the concept of literacy;
for instance, visualization literacy assesses the abilities of a person
to read and understand visualizations [Boy et al., 2014]. These are ex-
amples of teachingmethodologies to scientists in other fields, which
may help to foster and educate common knowledge amongmultiple
disciplines. But this exchange of knowledge needs to also go from
applications to computer science. This thesis is a stepping stone to
move computer science and its applications in the analysis of move-
ment closer to each other.
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Summary

Smaller and cheaper tracking devices with at the same time higher
accuracy allow researchers to track large numbers of individuals to
in their quest to understand the phenomena behindmovement. The
availability of this technology led to the continuing trend to collect,
publish, and share movement datasets in data repositories. Because
movement is ubiquitous, researchers from various disciplines are in-
volved in tracking individuals, analyzing their trajectories, and ulti-
mately, understanding the connection between movement and its
drivers.

Methods to analyze these datasets have been developed in a variety
of research areas. For example, researchers in algorithms are con-
cerned with analyzing geometric problems and designing new algo-
rithms for trajectory data, and visualization researchers develop nov-
el visual representations fromtrajectorydata togain insights. Domain
experts, from ecology, urban planning, or sports analytics, need new
analytical methods for both: methods to quantify spatio-temporal
properties andmeans to analyze movement data qualitatively, for in-
stance exploration. To date, new methods in algorithms and visual-
ization are being developed only within their field. However, both al-
gorithms and visualization are crucial and complement each other in
the analysis of movement data.

In this thesis, we explore how combining algorithms and visualiza-
tion can enhance the analysis of movement data. Thus, we aim to fill
themethodological gapbetweenalgorithmsand visualizationby inte-
grating computations, their context, and their visual representations
more closely. Filling this gapwill helpmovement analysts to external-
ize their cognition by integrating algorithmic means, visual means,
and theirdomainknowledge intoaholistic tooling. Thecontributions
of this thesis make it possible formovement analysts to benefit from
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theexchangeof ideas andconceptsbetweenalgorithmsandvisualiza-
tion.

Our contributions to the analysis ofmovement aremanifold. Wepro-
videa thoroughoverviewof the state-of-the-art inmovementanalysis
in which we survey results to computational movement analysis as
well as advances in the visualization ofmovement. We present a new
taxonomy for the analysis of trajectory data, that can aid researchers
in designing new analytical methods.

The second contribution of this thesis are results on the
computational complexity of movement analysis tasks. We present
two new lower bounds. We show that a simplification cannot be com-
puted in subquadratic time for a trajectory of n points, presuming
those points lie in Ω(logn) dimensions and assuming the Strong Ex-
ponential TimeHypothesis. Then, we prove that the discrete Fréchet
distance for k trajectories, each of length n, cannot be computed in
O(nk−ϵ) time for any ϵ > 0 assuming the Strong Exponential TimeHy-
pothesis. Furthermore, we provide an overview of previous results
on algorithms and their algorithmic complexity for analyzing move-
ment data.

Subsequently, we present a new algorithm to compute progressive
simplifications, i.e., a series of simplifications that are consistent
acrossmultiple scales, inO(n3m) timewith n as the number of points
in the input curve andm as the number of scales. Progressive simpli-
fications are particularly important for showing trajectories (or other
line features) on interactive, zoomable maps. Our algorithm
computes a progressive simplification for a range of continuous
scales in O(n5) time. A core element in simplification algorithms is
the so-called shortcut graph. It stores for any line segment whether
the segment approximates its induced subcurve given an error value.
Moreover, we developed a new representation for such shortcut
graphs allowing us to compute (non-)progressive simplifications
more efficiently: a technique for computing the maximum error for
all shortcuts in O(n2 logn) time instead of O(n3) time, and a
compressed shortcut graph allowing us to find shortest paths typical-
ly in O(n logn) time.
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Our fourth contribution in this thesis is a versatile visual analytics
tool toexplore interactioneventsasaction-reactionpatternsbetween
two (or three) trajectories. We use alignment methods that allow us
to capture delayed responses; we visualize these delays in addition
to statistics on the alignment. Furthermore, we present a novel ap-
proach for computing a global delay between two trajectories, each
of consisting of n points, inO(n logn) time, by employing Fast Fourier
Transforms. Weapplied our approach to three different datasets and
compared it to existing approaches on dynamic interaction.

The final contribution of this thesis is a visual analytics approach that
helps ecologists to explore animal migration patterns interactively.
We identify and aggregate stopovers, which are breaks from migra-
tion. The aggregation is visualized on top of a geographic map for
varying spatial scales in addition to interconnected views to explore
spatio-temporal events. We evaluated our approach with an expert
user on a dataset of 75 lesser black-backed gulls.
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