
EuroCG 2014, Ein-Gedi, Israel, March 3–5, 2014

Low-Crossing Spanning Trees: an Alternative Proof and Experiments

Panos Giannopoulos∗ Maximilian Konzack† Wolfgang Mulzer∗

Abstract

We give a quick proof that any planar n-point set
has a spanning tree with crossing number O(

√
n).

Our proof relies on an LP-based approach by Har-
Peled [8], and it uses Farkas’ lemma. We also present
a new heuristic for computing a spanning tree with
low crossing number and compare it experimentally
with other known approaches.

1 Introduction

Let P be a planar n-point set in general position.
A spanning tree T for P is a plane geometric graph
with vertex set P that is connected and acyclic. The
crossing number of T is the maximum number of line
segments in T that can be intersected by any line.

Chazelle and Welzl showed that P always has a
spanning tree with crossing number O(

√
n) [5]. The

original proof uses iterative reweighting [5, 11], a
method with widespread use throughout theoretical
computer science that is closely connected to linear
programming [3]. Har-Peled [8] made this connection
explicit for spanning trees with low crossing number:
their existence can be proved by showing that a cer-
tain LP is feasible and applying iterative randomized
rounding (similar techniques also appear in [4, 6]).
We give an alternative proof of feasibility that uses
Farkas’ Lemma.

The problem of computing a spanning tree with
minimum crossing number is NP-hard [7], while there
is an O(log n/ log log n)- and O(log n)-approximation
algorithm (resp.) [8, 6] and a heuristic based on iter-
ative LP-rounding [7], see also Section 3. We present
a new heuristic and perform extensive experiments.

Preliminaries and Notation. Let EP be the set
of line segments pq with p 6= q ∈ P , and LP a set of
representative lines for all possible ways of how P can
be partitioned into two sets by a line; |LP | = O(n2).
For ` ∈ LP , let E` ⊆ EP be the set of all edges that
intersect `. Conversely, for pq ∈ EP , let Lpq ⊆ LP be
the set of lines that intersect pq. Clearly, it suffices to
bound the crossing number w.r.t. the lines in LP .

Let L be a set of lines in the plane and p, q ∈ R2

two points. The crossing distance dL(p, q) between p

∗Institut für Informatik, Freie Universität Berlin, Germany,
{panos, mulzer}@inf.fu-berlin.de
†TU Eindhoven, The Netherlands, m.p.konzack@tue.nl.

Supported by NWO, project no. 612.001.207

and q with respect to L is the number of lines in L
intersected by the line segment pq. The crossing disk
around p with radius r > 0, DL(p, r), is the set of all
points q ∈ R2 with dL(p, q) ≤ r. We will need the
following lemma [11, Lemma 2.1]:

Lemma 1 For any p ∈ R2 and r ∈ {0, . . . , d|L|/2e},
the disk DL(p, r) contains at least

(
r+1
2

)
vertices of

the arrangement of L.

We will use the following variant of Farkas’ lemma [10,
Exercise 1.3.7(b)].

Lemma 2 (Farkas’ Lemma) Let A be a rational
m × n matrix and b ∈ Qm. Either there is a vec-
tor x ∈ Qn that satisfies Ax ≤ b, x ≥ 0, or there is a
vector y ∈ Qm that satisfies AT y ≥ 0, bT y < 0, y ≥ 0.

2 Existence of Trees with Low Crossing Number

The following LP models a graph on P with crossing
number O(

√
n) where each point has an incident edge.∑

pq∈E`

xpq ≤
√
n, for all ` ∈ LP∑

pq∈EP

xpq ≥ 1, for all p ∈ P

xpq ≥ 0, for all pq ∈ EP .

Lemma 3 The LP is feasible.

Proof. By Lemma 2, it is enough to show that the
following system is infeasible.

√
n
∑
`∈LP

y` <
∑
p∈P

yp (*)

∑
`∈Lpq

y` ≥ yp + yq, for all pq ∈ EP

y` ≥ 0, yp ≥ 0, for all ` ∈ LP , p ∈ P.

Suppose there is a solution y ∈ Qm. From (*) we
derive that there is a c > 0 so that for all λ ∈ N,

√
n
∑
`∈LP

λy` =
∑
p∈P

λyp − λc (1)

Fix λ ∈ N and set z = λy. For λ large enough, z is
integral. Let L be the line set with z` copies of `, for
each ` ∈ LP , slightly perturbed so that L contains
N =

∑
`∈LP

z` lines in general position.

30th European Workshop on Computational Geometry, 2014

Let pq ∈ EP with zp, zq ≥ 1. Since z is also a
solution, we have dL(p, q) =

∑
`∈Lpq

z` ≥ zp + zq.

Then DL(p, zp − 1) ∩ DL(q, zq − 1) = ∅: otherwise
there would be a point r with dL(p, r) ≤ zp − 1 and
dL(r, q) ≤ zq − 1, and the triangle inequality would
give dL(p, q) ≤ zp + zq − 2. By Lemma 1, this implies∑
p∈P

(
zp
2

)
≤
(
N
2

)
, since the arrangement of L has

(
N
2

)
vertices. Hence,

∑
p∈P

zp ≤
√
n

√∑
p∈P

z2p ≤
√
n

√√√√∑
p∈P

2

(
zp
2

)
+ zp

≤
√
n

√√√√2

(
N

2

)
+
∑
p∈P

zp ≤
√
nN +

√
n
∑
p∈P

zp,

where we used Cauchy-Schwarz; a2 = 2
(
a
2

)
+ a; the

above observation; and finally
√
a+ b ≤

√
a +
√
b.

Recalling (1), N =
∑
`∈LP

z`, and z = λy, we get

∑
p∈P

λyp − λc =
√
n
∑
`∈LP

λy` ≥
∑
p∈P

λyp −
√
n
∑
p∈P

λyp.

Thus, λ ≤ (n/c2)
∑
p∈P yp, a contradiction to λ ∈ N

being arbitrary. Hence, the LP must be feasible. �

Iterative rounding now shows that a spanning tree of
low crossing number exists [8, 4, 6]. For completeness,
we include a proof.

Lemma 4 Let P ⊆ R2 be an n-point set in general
position. There is a set E ⊆ EP of line segments so
that the graph (P,E) has at most 3n/4 components
and crossing number at most c

√
n, for a fixed c > 0.

Proof. We use the probabilistic method. Take a fea-
sible solution x for the LP, as in Lemma 3. We in-
clude each pq ∈ EP in E independently with prob-
ability min{xpq, 1}. For each p ∈ P , the probability
that p is not incident to any edge in E is at most∏
pq∈EP

(1− xpq) ≤ exp(−
∑
pq∈EP

xpq) ≤ 1/e. Thus,
letting µ denote the expected number of singletons,
the expected number of components in (P,E) is at
most (n−µ)/2 +µ = n/2 +µ/2 ≤ n(1/2 + 1/2e). By
Markov’s inequality, with probability at least 1/20,
the graph (P,E) has at most 3n/4 components.

Consider a line ` ∈ LP . By Chernoff’s bound, the
probability that ` crosses more than 2e

√
n edges in E

is at most 2−2e
√
n. Taking a union bound, the prob-

ability that any line in LP crosses more than 2e
√
n

segments is much less than 1/30, for n large enough.
Thus, E fulfills the claimed properties with positive
probability, which implies existence. �

Theorem 5 Let P be a planar n-point set in general
position. There exists a spanning tree T for P with
crossing number d

√
n, for some fixed d > 0.

Proof. We use induction on n. For n = O(1), the
statement holds. For larger n, use Lemma 4 to obtain
a set E ⊆ EP such that (P,E) has at most 3n/4
components and crossing number c

√
n. Let P ′ contain

one vertex from each connected component of (P,E).
By induction, P ′ has a spanning tree T ′ with crossing
number at most d

√
|P ′| ≤ d

√
3n/4. The union T ′∪E

is a spanning graph for P with crossing number at
most c

√
n+ d

√
3n/4 ≤ d

√
n, for d large enough. We

take a spanning tree of this graph. �

3 Heuristics and Experiments

We present a new simple heuristic, the Connected
Components algorithm, for finding a spanning tree
with low crossing number. We have implemented it
and three other algorithms. First, we briefly describe
the methods, and then we report on the experiments.
In the following, L is an arbitrary (finite) set of lines.

Iterative Reweighting [5, 11]. We follow the pre-
sentation in [9]. The algorithm constructs a spanning
tree by adding the edges one by one. Let Ei ⊂ EP be
the edges after the ith iteration (with E0 = ∅). Each
line ` ∈ L is assigned a weight, which at the begin-
ning of the ith iteration is wi−1(`) = 2ni−1(`), where
ni−1(`) = |{e ∈ Ei−1 | e ∩ ` 6= ∅}|. Accordingly, the
weight of an edge e is

wi−1(e) =
∑

`∈L: `∩e6=∅

wi−1(`).

In iteration i, the algorithm selects a lightest edge
between two different components in (P,Ei−1). This
is repeated until a spanning tree has been formed.

Har-Peled’s algorithm ([8], see also [4, 6]) This is
an implementation of the proof of Theorem 5: we set
up an LP as in the beginning of Section 2, replacing√
n by a parameter t to be optimized. We solve the

LP and use the resulting variables xpq as probabili-
ties to sample a subset of edges E. With constant
probability, (P,E) has at most 3n/4 components, in
which case we take one point from each component
(otherwise we resample). We repeat until the prob-
lem size is O(1), and we return a spanning tree from
the union of all sampled edges. One can show that
the result has expected crossing number O(t∗ log n),
where t∗ is the optimum.

Iterative LP-rounding [7]. Fekete et al. gave the
following IP for computing an optimum spanning tree:

minimize t

s. t.
∑

pq∈EP

xpq = n− 1

∑
pq∈δ(S)

xpq ≥ 1 ∀ ∅ 6= S ⊂ P (*)

EuroCG 2014, Ein-Gedi, Israel, March 3–5, 2014

∑
pq∈EP : pq∩` 6=∅

xpq ≤ t ∀ ` ∈ L

xpq ∈ {0, 1} ∀ pq ∈ EP ,

where δ(S) := {pq ∈ EP | p ∈ S, q /∈ S} is the cut in-
duced by S. They also suggested the following itera-
tive rounding algorithm: repeatedly solve the relaxed
LP (where 0 ≤ xpq ≤ 1), each time fixing the value of
a heaviest edge to one (by adding a constraint to the
LP). Despite the exponential number of blossom con-
straints (*), Fekete et al. suggested that the LP can
be solved in polynomial time by using a separation
oracle. Unfortunately, we were unable to implement
such an oracle in our LP solver (Gurobi; see also be-
low). Moreover, a heaviest edge may render the LP
infeasible by creating a cycle. As a remedy, we opted
for the following polynomially many fractional con-
nectivity constraints∑

pq∈EP : p∈C,q/∈C

xpq ≥ 1 ∀ C ∈ C,

where C is the set of the connected components in-
duced by the edges selected so far. The constraints
ensure that each component has at least one outgoing
edge. Finally, a heaviest edge between two compo-
nents is selected.

Connected Components. Our approach is similar
to the Iterative LP-rounding above, but now the LP
models only the edges among the connected compo-
nents in C. Let E(C) be these edges. We have

minimize t

s. t.
∑

pq∈E(C)

xpq = |C| − 1

∑
pq∈E(C): p∈C

xpq ≥ 1 ∀C ∈ C

∑
pq∈E(C): pq∩` 6=∅

xpq ≤ t ∀` ∈ L

xpq ≥ 0 ∀pq ∈ E(C)

At each iteration the heaviest edge is selected, and
the algorithm runs until there is only one component.

3.1 Experimental Results

We ran the algorithms on artificial data and on real
TSP instances from TSPLIB [2]. The experiments
were run on a GNU/Linux Debian Wheezy server with
eight Intel Xeon E 5440 CPUs at 2.83 GHz and 32
GB of shared RAM. The code was written in Python
(v.2.7.3), while for solving LPs we used Gurobi (v.5)
with four threads [1].

Artificial Data. These consist of points sampled
uniformly at random from the integer [n] × [n] grid
and randomly perturbed by some small ε, with (a)

(a) All lines

(b) Random lines

Figure 1: Results on random points.

all Θ(n2) lines, i.e., L = LP and (b) Θ(
√
n) random

lines; see Fig. 1. In (a) all algorithms produce a span-
ning tree with a crossing number of O(

√
n), with It-

erative Reweighting performing best. In (b) Iterative
Reweighting yields a crossing number that is notice-
ably lower than O(

√
n).

Fig. 2 shows the average crossing number (i.e., num-
ber of all crossings over the number of lines) on ran-
dom points and random lines chosen as before. Iter-
ative Reweighting and Connected Components yield
the best results and produce an average crossing num-
ber of O(log n).

TSPLIB. The results are shown in Fig. 3. For
small instances, the crossing number was computed
w.r.t. all Θ(n2) lines, while for large instances we
used random lines since, computationally, the ‘all
lines’ case proved to be prohibitively expensive. Iter-
ative Reweighting produces a spanning tree with low-
est crossing number for all instances except for the
ulysses ones, for which Iterative LP-rounding wins.
Har-Peled’s algorithm and Iterative LP-rounding are
fastest, while Iterative Reweighting and Connected

30th European Workshop on Computational Geometry, 2014

Figure 2: Average crossing number on random points
with random lines.

Lines IterReweighting
Data set |L| type Q Q CPU

berlin52 1036 all 7 3.97 454.60
bier127 120 rand. 5 1.94 491.99
eil51 1043 all 6 2.91 419.33
eil76 2198 all 6 2.64 2377.09
eil101 138 rand. 4 1.73 313.66
lin105 93 rand. 4 2.14 245.24
u159 129 rand. 2 0.69 1109.36
ulysses16 122 all 5 2.70 2.65
ulysses22 208 all 6 3.07 10.84

IterLP-rouding Har-PeledLP
Q Q CPU Q Q CPU

8 4.75 199.08 16 6.71 208.52
20 6.87 142.85 16 7.52 137.15
11 4.91 187.10 10 6.14 198.38
15 7.15 896.56 16 7.89 922.36
15 6.94 103.31 15 7.30 99.99
22 8.60 75.37 11 5.11 73.09
24 12.62 254.18 17 6.41 231.49
4 2.92 2.08 8 3.87 2.36
5 3.83 6.86 11 4.50 7.77

ConnectCompLP
Q Q CPU

10 5.17 503.61
8 2.85 639.01
9 3.43 478.28
9 3.40 3020.36
8 2.43 389.78
5 2.62 293.81
3 0.87 1450.29
7 3.25 2.82
7 3.54 10.90

Figure 3: Results on TSPLIB instances; Q: crossing
number, Q: average crossing number, CPU: comput-
ing time in seconds. The table is split in three parts,
the data set and line number/type appear only in the
first part.

Components achieve relatively similar results w.r.t.
the crossing and average crossing number.

We have also computed an optimal solution for
ulysses16 using the ILP by Fekete et al., see Fig. 4.
Iterative Reweighting and Iterative LP-rounding get
closest to the optimal crossing numbers. Due to the
exponential number of the blossom inequalities in the
ILP we were not able to compute optimal solutions for
larger instances within reasonable processing time.

Algorithm Q Q CPU

OPT 4 2.84 85.00
IterReweighting 5 2.70 2.65
IterLP-rounding 4 2.92 2.08
Har-PeledLP 8 3.87 2.36
ConnectedCompLP 7 3.25 2.82

Figure 4: Comparison to an optimal solution on
ulysses16 with L = LP , | L |= 122.

Acknowledgments. We would like to thank Nabil

Mustafa, Sariel Har-Peled and Sandor Fekete for helpful

discussions.

References

[1] Gurobi Optimizer v.5. http://www.gurobi.com/.

[2] TSPLIB. http://comopt.ifi.uni-heidelberg.de/

software/TSPLIB95/.

[3] S. Arora, E. Hazan, and S. Kale. The multiplicative
weights update method: a meta-algorithm and appli-
cations. Theory of Computing, 8(6):121–164, 2012.

[4] V. Bilò, V. Goyal, R. Ravi, and M. Singh. On the
crossing spanning tree problem. In Proc. 8th/7th
APPROX-RANDOM, pages 51–60, 2004.

[5] B. Chazelle and E. Welzl. Quasi-optimal range
searching in space of finite VC-dimension. Discrete
Comput. Geom., 4:467–489, 1989.

[6] C. Chekuri, J. Vondrák, and R. Zenklusen. Depen-
dent randomized rounding for matroid polytopes and
applications. arXiv:0909.4348, 2009.

[7] S. P. Fekete, M. E. Lübbecke, and H. Meijer. Mini-
mizing the stabbing number of matchings, trees, and
triangulations. Discrete Comput. Geom., 40(4):595–
621, 2008.

[8] S. Har-Peled. Approximating spanning trees with low
crossing number. arXiv:0907.1131, 2009.

[9] S. Har-Peled. Geometric approximation algorithms.
AMS, 2011.

[10] J. Matoušek. Lectures on discrete geometry. Springer-
Verlag, New York, 2002.

[11] E. Welzl. On spanning trees with low crossing num-
bers. In Data Structures and Efficient Algorithms,
LNCS 594, pages 233–249, 1992.

